Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 11: 1362011, 2024.
Article in English | MEDLINE | ID: mdl-38872793

ABSTRACT

This study aims to investigate bacterial communities and antimicrobial resistance (AMR) in airborne dust from pig farms. Airborne dust, pig feces and feed were collected from nine pig farms in Thailand. Airborne dust samples were collected from upwind and downwind (25 meters from pig house), and inside (in the middle of the pig house) of the selected pig house. Pig feces and feed samples were individually collected from the pen floor and feed trough from the same pig house where airborne dust was collected. A direct total bacteria count on each sampling plate was conducted and averaged. The ESKAPE pathogens together with Escherichia coli, Salmonella, and Streptococcus were examined. A total of 163 bacterial isolates were collected and tested for MICs. Pooled bacteria from the inside airborne dust samples were analyzed using Metagenomic Sequencing. The highest bacterial concentration (1.9-11.2 × 103 CFU/m3) was found inside pig houses. Staphylococcus (n = 37) and Enterococcus (n = 36) were most frequent bacterial species. Salmonella (n = 3) were exclusively isolated from feed and feces. Target bacteria showed a variety of resistance phenotypes, and the same bacterial species with the same resistance phenotype were found in airborne dust, feed and fecal from each farm. Metagenomic Sequencing analysis revealed 1,652 bacterial species across all pig farms, of which the predominant bacterial phylum was Bacillota. One hundred fifty-nine AMR genes of 12 different antibiotic classes were identified, with aminoglycoside resistance genes (24%) being the most prevalent. A total of 251 different plasmids were discovered, and the same plasmid was detected in multiple farms. In conclusion, the phenotypic and metagenomic results demonstrated that airborne dust from pig farms contained a diverse array of bacterial species and genes encoding resistance to a range of clinically important antimicrobial agents, indicating the significant role in the spread of AMR bacterial pathogens with potential hazards to human health. Policy measurements to address AMR in airborne dust from livestock farms are mandatory.

2.
PLoS One ; 19(5): e0304250, 2024.
Article in English | MEDLINE | ID: mdl-38787814

ABSTRACT

This study aimed to investigate the potential mechanisms associated with the persistence of chloramphenicol (CHP) resistance in Escherichia coli and Salmonella enterica isolated from pigs, pork, and humans in Thailand. The CHP-resistant E. coli (n = 106) and Salmonella (n = 57) isolates were tested for their CHP susceptibility in the presence and absence of phenylalanine arginine ß-naphthylamide (PAßN). The potential co-selection of CHP resistance was investigated through conjugation experiments. Whole genome sequencing (WGS) was performed to analyze the E. coli (E329, E333, and E290) and Salmonella (SA448, SA461, and SA515) isolates with high CHP MIC (32-256 µg/mL) and predominant plasmid replicon types. The presence of PAßN significantly reduced the CHP MICs (≥4-fold) in most E. coli (67.9%) and Salmonella (64.9%). Ampicillin, tetracycline, and streptomycin co-selected for CHP-resistant Salmonella and E. coli-transconjugants carrying cmlA. IncF plasmids were mostly detected in cmlA carrying Salmonella (IncFIIAs) and E. coli (IncFIB and IncF) transconjugants. The WGS analysis revealed that class1 integrons with cmlA1 gene cassette flanked by IS26 and TnAs1 were located on IncX1 plasmid, IncFIA(HI1)/HI1B plasmids and IncFII/FIB plasmids. IncFIA(HI1)/HI1B/Q1in SA448 contained catA flanked by IS1B and TnAs3. In conclusion, cross resistance through proton motive force-dependent mechanisms and co-selection by other antimicrobial agents involved the persistence of CHP-resistance in E. coli in this collection. Dissemination of CHP-resistance genes was potentially facilitated by mobilization via mobile genetic elements.


Subject(s)
Escherichia coli , Microbial Sensitivity Tests , Plasmids , Animals , Escherichia coli/genetics , Escherichia coli/drug effects , Thailand , Swine , Humans , Plasmids/genetics , Salmonella/genetics , Salmonella/drug effects , Anti-Bacterial Agents/pharmacology , Chloramphenicol Resistance/genetics , Chloramphenicol/pharmacology , Whole Genome Sequencing
3.
Epidemiol Infect ; 150: e110, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35535461

ABSTRACT

This study aimed to determine the epidemiology and association of antimicrobial resistance (AMR) among Escherichia coli and Salmonella in Thailand. The E. coli (n = 1047) and Salmonella (n = 816) isolates from pigs, pork and humans were screened for 18 replicons including HI1, HI2, I1-γ, X, L/M, N, FIA, FIB, W, Y, P, FIC, A/C, T, FIIAs, F, K and B/O using polymerase chain reaction-based replicon typing. The E. coli (n = 26) and Salmonella (n = 3) isolates carrying IncF family replicons, ESBL and/or mcr genes were determined for FAB formula. IncF represented the major type of plasmids. Sixteen and eleven Inc groups were identified in E. coli (85.3%) and Salmonella (25.7%), respectively. The predominant replicon patterns between E. coli and Salmonella were IncK-F (23.7%) and IncF (46.2%). Significant correlations (P < 0.05) were observed between plasmid-replicon type and resistance phenotype. Plasmid replicon types were significantly different among sources of isolates and sampling periods. The most common FAB types between E. coli and Salmonella were F2:A-:B- (30.8%) and S1:A-:B- (66.7%), respectively. In conclusion, various plasmids present in E. coli and Salmonella. Responsible and prudent use of antimicrobials is suggested to reduce the selective pressures that favour the spread of AMR determinants. Further studies to understand the evolution of R plasmids and their contribution to the dissemination of AMR genes are warranted.


Subject(s)
Escherichia coli Infections , Pork Meat , Red Meat , Salmonella enterica , Animals , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Humans , Plasmids/genetics , Salmonella/genetics , Salmonella enterica/genetics , Swine , beta-Lactamases/genetics
4.
J Vet Sci ; 22(5): e68, 2021 09.
Article in English | MEDLINE | ID: mdl-34423604

ABSTRACT

BACKGROUND: Colistin and carbapenem-resistant bacteria have emerged and become a serious public health concern, but their epidemiological data is still limited. OBJECTIVES: This study examined colistin and carbapenem resistance in Escherichia coli and Salmonella from pigs, pig carcasses, and pork in Thailand, Lao PDR, and Cambodia border provinces. METHODS: The phenotypic and genotypic resistance to colistin and meropenem was determined in E. coli and Salmonella obtained from pigs, pig carcasses, and pork (n = 1,619). A conjugative experiment was performed in all isolates carrying the mcr gene (s) (n = 68). The plasmid replicon type was determined in the isolates carrying a conjugative plasmid with mcr by PCR-based replicon typing (n = 7). The genetic relatedness of mcr-positive Salmonella (n = 11) was investigated by multi-locus sequence typing. RESULTS: Colistin resistance was more common in E. coli (8%) than Salmonella (1%). The highest resistance rate was found in E. coli (17.8%) and Salmonella (1.7%) from Cambodia. Colistin-resistance genes, mcr-1, mcr-3, and mcr-5, were identified, of which mcr-1 and mcr-3 were predominant in E. coli (5.8%) and Salmonella (1.7%), respectively. The mcr-5 gene was observed in E. coli from pork in Cambodia. Two colistin-susceptible pig isolates from Thailand carried both mcr-1 and mcr-3. Seven E. coli and Salmonella isolates contained mcr-1 or mcr-3 associated with the IncF and IncI plasmids. The mcr-positive Salmonella from Thailand and Cambodia were categorized into two clusters with 94%-97% similarity. None of these clusters was meropenem resistant. CONCLUSIONS: Colistin-resistant E. coli and Salmonella were distributed in pigs, pig carcasses, and pork in the border areas. Undivided-One Health collaboration is needed to address the issue.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli Proteins/genetics , Escherichia coli/physiology , Pork Meat/microbiology , Salmonella/physiology , Animals , Cambodia , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Laos , Plasmids/physiology , Salmonella/genetics , Sus scrofa , Thailand
5.
Antibiotics (Basel) ; 10(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072965

ABSTRACT

The study aimed to examine the prevalence and genetic characteristics of ESBL-production and colistin resistance in Salmonella and Escherichia coli from pigs and pork in the border area among Thailand, Cambodia, Lao PDR, and Myanmar. Salmonella (n = 463) and E. coli (n = 767) isolates were collected from pig rectal swab from slaughterhouses (n = 441) and pork from retail markets (n = 368) during October 2017 and March 2018. All were determined for susceptibility to colistin and cephalosporins, ESBL production and mcr and ESBL genes. Salmonella was predominantly found in Cambodia (65.8%). Serovars Rissen (35.6%) and Anatum (15.3%) were the most common. The E. coli prevalence in pork was above 91% in all countries. Colistin-resistance rate in E. coli (10.4%) was significantly higher than Salmonella (2.6%). ESBL-producing Salmonella (1.9%) and E. coli (6.3%) were detected. The blaCTX-M-55 and blaCTX-M-14 were identified. The mcr-1 gene was detected in Salmonella (n = 12) and E. coli (n = 68). The mcr-1/blaCTX-M-55 and mcr-3/blaCTX-M-55 co-concurrence was observed in one Salmonella and three E. coli isolates, respectively. In conclusion, pigs and pork serve as carriers of colistin and new generation cephalosporins resistance. Testing for resistance to last line antibiotics should be included in national AMR surveillance program using One Health approach.

6.
J Vet Sci ; 18(3): 273-281, 2017 Sep 30.
Article in English | MEDLINE | ID: mdl-27586467

ABSTRACT

Salmonella enterica isolates (n = 122), including 32 serotypes from 113 dogs and 9 cats, were obtained from household dogs (n = 250) and cats (n = 50) during 2012-2015. The isolates were characterized by serotyping, antimicrobial resistance phenotyping and genotyping, and virulence gene screening. Serovars Weltevreden (15.6%) and Typhimurium (13.9%) were the most common. The majority (43%) of the isolates were multidrug resistant. The dog isolates (12.3%) harbored class 1 integrons, of which the dfrA12-aadA2 cassette was most frequent (66.7%). The only class integron in serovar Albany was located on a conjugative plasmid. Two ESBL-producing isolates (i.e., a serovar Krefeld and a serovar Enteritridis) carried blaTEM and blaCTX-M, and the blaTEM gene in both was horizontally transferred. Of the plasmid-mediated quinolone resistance genes tested, only qnrS (4.9%) was detected. Most Salmonella isolates harbored invA (100%), prgH (91.8%), and sipB (91%). Positive associations between resistance and virulence genes were observed for blaPSE-1/orgA, cmlA/span, tolC, and sul1/tolC (p < 0.05). The results suggest that companion dogs and cats are potential sources of S. enterica strains that carry resistance and virulence genes and that antimicrobial use in companion animals may select for the examined Salmonella virulence factors.


Subject(s)
Salmonella Infections, Animal/microbiology , Salmonella enterica/genetics , Virulence Factors/genetics , Animals , Anti-Bacterial Agents/therapeutic use , Cat Diseases/drug therapy , Cat Diseases/microbiology , Cats , Dog Diseases/drug therapy , Dog Diseases/microbiology , Dogs , Drug Resistance, Bacterial/genetics , Integrons/genetics , Microbial Sensitivity Tests/veterinary , Polymerase Chain Reaction/veterinary , Salmonella Infections, Animal/drug therapy , Salmonella enterica/drug effects , Salmonella enterica/pathogenicity , Serotyping/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...