Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(12): 6261-6271, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38490963

ABSTRACT

Surface deposition of magnesium ferrite nanoparticles (MgFe2O4 NPs) with bimetallic gold/silver (Au/Ag) nanoparticles was conducted using the seed-mediated growth method to obtain magnetic-metallic composite catalysts for use in the catalytic reduction of nitroaromatics. Two types of amine-functionalized MgFe2O4 and MgFe2O4@SiO2 NPs were used as magnetic supports for the surface deposition process. The combination of several characterization analyses (i.e., XRD, XPS, TEM, SEM, EDS, and VSM) confirmed the successful syntheses of the MgFe2O4/Au/Ag and MgFe2O4@SiO2/Au/Ag NPs. The catalytic reduction of 4-nitrophenol using sodium borohydride as a reducing agent revealed that the reaction was completed within 2 min by using MgFe2O4/Au/Ag and MgFe2O4@SiO2/Au/Ag NPs as catalysts. The appearance rate constant of the MgFe2O4/Au/Ag NPs was slightly higher than that of the MgFe2O4@SiO2/Au/Ag NPs. In terms of reusability, high conversion (>80%) of the reduction of 4-nitrophenol was still obtained after 7 and 10 consecutive cycles for the MgFe2O4/Au/Ag and MgFe2O4@SiO2/Au/Ag catalysts, respectively. Interestingly, these two catalysts exhibited the highly catalytic conversion of the chosen nitroaromatic derivatives (i.e., 4-nitrobenzaldehyde and 4-nitroaniline). On the whole, the MgFe2O4/Au/Ag and MgFe2O4@SiO2/Au/Ag NPs could be utilized as suitable and sustainable catalysts for the catalytic reduction of nitroaromatics due to several desirable features (i.e., high activity, facile and rapid separation by a magnet, and good reusability).

2.
Nanomaterials (Basel) ; 13(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37513152

ABSTRACT

Harmful algal blooms impact human welfare and are a global concern. Sargassum spp., a type of algae or seaweed that can potentially bloom in certain regions of the sea around Thailand, exhibits a noteworthy electron capacity as the sole reducing and stabilizing agent, which suggests its potential for mediating nanoparticle composites. This study proposes an eco-friendly microwave-assisted biosynthesis (MAS) method to fabricate silver nanoparticles coated with Sargassum aqueous extract (Ag/AgCl-NPs-ME). Ag/AgCl-NPs-ME were successfully synthesized in 1 min using a 20 mM AgNO3 solution without additional hazardous chemicals. UV-visible spectroscopy confirmed their formation through a surface plasmon resonance band at 400-500 nm. XRD and FTIR analyses verified their crystalline nature and involvement of organic molecules. TEM and SEM characterization showed well-dispersed Ag/AgCl-NPs-ME with an average size of 36.43 nm. The EDS results confirmed the presence of metallic Ag+ and Cl- ions. Ag/AgCl-NPs-ME exhibited significant antioxidant activity against free radicals (DPPH, ABTS, and FRAP), suggesting their effectiveness. They also inhibited enzymes (tyrosinase and ACE) linked to diseases, indicating therapeutic potential. Importantly, the Ag/AgCl-NPs-ME displayed remarkable cytotoxicity against cancer cells (A375, A549, and Caco-2) while remaining non-toxic to normal cells. DNA ladder and TUNEL assays confirmed the activation of apoptosis mechanisms in cancer cells after a 48 h treatment. These findings highlight the versatile applications of Ag/AgCl-NPs-ME in food, cosmetics, pharmaceuticals, and nutraceuticals.

3.
Langmuir ; 34(43): 12680-12693, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30300547

ABSTRACT

Successive surface reactions on hydrophilic silica substrates were designed and performed to immobilize ethanolamine-modified magnetic ferrite-based nanoparticle (NP) for surface characterization. The various surfaces were monitored using sum-frequency generation (SFG) spectroscopy. The surface of the hydrophilic quartz substrate was first converted to a vinyl-terminated surface by utilizing a silanization reaction, and then, the surface functional groups were converted to carboxylic-terminated groups via a thiol-ene reaction. The appearance and disappearance of the vinyl (═CH2) peak at ∼2990 cm-1 in the SFG spectra were examined to confirm the success of the silanization and thiol-ene reactions, respectively. Acyl chloride (-COCl) formation from carboxy (-COOH) functional group was then performed for further attachment of magnetic amine-functionalized magnesium ferrite nanoparticles (NPs) via amide bond formation. The scattered NPs attached on the modified silica substrate was then used to study the changes in the spectral profile of the ethanolamine modifier of the NPs for in situ lead(II) (Pb2+) adsorption at the solid-liquid interface using SFG spectroscopy. However, due to the limited number of NPs attached and sensitivity of SFG spectroscopy toward expected change in the modifier spectroscopically, no significant change was observed in the SFG spectrum of the modified silica with magnetic NPs during exposure to Pb2+ solution. Nevertheless, SFG spectroscopy as a surface technique successfully monitored the modifications from a clean fused substrate to -COCl formation that was used to immobilize the decorated magnetic nanoparticles. The method developed in this study can provide a reference for many surface or interfacial studies important for selective attachment of adsorbed organic or inorganic materials or particles.

4.
Gels ; 4(2)2018 Mar 26.
Article in English | MEDLINE | ID: mdl-30674804

ABSTRACT

Gold nanoshells (~160 nm in diameter) were encapsulated within a shell of temperature-responsive poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-co-AA)) using a surface-bound rationally-designed free radical initiator in water for the development of a photothermally-induced drug-delivery system. The morphologies of the resultant hydrogel-coated nanoshells were analyzed by scanning electron microscopy (SEM), while the temperature-responsive behavior of the nanoparticles was characterized by dynamic light scattering (DLS). The diameter of the P(NIPAM-co-AA) encapsulated nanoshells decreased as the solution temperature was increased, indicating a collapse of the hydrogel layer with increasing temperatures. In addition, the optical properties of the composite nanoshells were studied by UV-visible spectroscopy. The surface plasmon resonance (SPR) peak of the hydrogel-coated nanoshells appeared at ~800 nm, which lies within the tissue-transparent range that is important for biomedical applications. Furthermore, the periphery of the particles was conjugated with the model protein avidin to modify the hydrogel-coated nanoshells with a fluorescent-tagged biotin, biotin-4-fluorescein (biotin-4-FITC), for colorimetric imaging/monitoring.

5.
Nanotechnology ; 28(37): 375602, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28782731

ABSTRACT

Two series of Ag x /Au/Pt y trimetallic nanoparticles (Ag x Au1Pt2 with x ranging from 1-5 and Ag4Au1Pt y with y ranging from 1-3) were prepared by a sequential chemical reduction method that involved the deposition of Pt on preformed Ag/Au core-shell particles by systematically controlling the amount of Ag, Au, and Pt metal precursor solutions. The structural changes (the diameters and increased surface roughness from the defective features) and absorption patterns (the significant reduction of the peak intensities) of the nanoparticles examined with TEM and UV-vis spectroscopy indicated the selective incorporation of Pt on the Ag/Au nanoparticles regardless of their compositions. In addition, a combination of WDX, XRD, and XPS analyses quantitatively and qualitatively confirmed the successful formation of the Ag x Au1Pt2 and Ag4Au1Pt y trimetallic nanoparticles. Subsequently, these series of nanoparticles were deposited on multi-wall carbon nanotubes (MWCNTs) to evaluate their electrocatalytic property in the methanol oxidation reaction (MOR) as a function of their metal compositions. The results showed that the electrocatalytic activities of all Ag4/Au1/Pt y systems were higher than those of typical Pt on the MWCNTs. In particular, the Ag4Au1Pt2 nanoparticles exhibited the highest electrocatalytic property for the MOR, suggesting the importance of the proper combination of metal constituents and structures to regulate the activity in electrocatalytic systems.

6.
Nanotechnology ; 28(2): 025601, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-27905318

ABSTRACT

The in situ formation of dielectric silica (SiO2) particles was carried out in the presence of temperature-responsive poly(N-isopropylacrylamide) particles. Unlike the typical sol-gel method used to prepare various SiO2 particles, the highly uniform growth of SiO2 particles was achieved within the cross-linked polymer particles (i.e., the polymer particles were filled with the SiO2 particles) simply by utilizing interfacial interactions, including the van der Waals attractive force and hydrogen bonding in nanoscale environments. The structural and morphological features as well as the thermal behaviors of these composites were thoroughly examined by electron microscopes, dynamic light scattering, and thermal analyzers. In particular, the thermal properties of these composites were completely different from the bare polymer, SiO2 particles, and their mixtures, which clearly suggested the successful incorporation of multiple SiO2 particles within the cross-linked polymer particles. Similarly, titanium oxide (TiO2) particles were easily embedded within the polymer particle template which exhibited improved overall properties. As a whole, understanding in situ formation of nanoscale inorganic particles within polymer particle templates can allow for designing novel composite materials possessing enhanced chemical and physical properties.

7.
Mater Sci Eng C Mater Biol Appl ; 61: 123-32, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26838832

ABSTRACT

In this work, the core-magnesium ferrite (MgFe2O4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe2O4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe2O4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV-visible spectroscopy (UV-vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe2O4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV-vis spectra of complete coated MgFe2O4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe2O4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe2O4 core. Both of MgFe2O4 and MgFe2O4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line.


Subject(s)
Ferric Compounds , Gold , Magnesium Compounds , Materials Testing , Nanoparticles/chemistry , Animals , Cell Line , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Gold/chemistry , Gold/pharmacology , Magnesium Compounds/chemistry , Magnesium Compounds/pharmacology , Mice
8.
J Nanosci Nanotechnol ; 14(10): 8053-5, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25942921

ABSTRACT

Characterization and electrocatalytic oxidation of formic acid on PtAu nanoparticles supported multiwalled carbon nanotube (MWCNT) were studied. Electrochemical measurements were conducted in a self-made conventional three-electrode glass cell at room temperature. A Pt wire and Ag/AgCl were used as auxiliary and reference electrodes, respectively. The Pt was electrodeposited onto the electrode and their catalytic activities in the electrooxidation of formic acid were examined and compared. The morphology and composition were studied by a combination of transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Cyclic voltamograms of formic acid electrooxidation show a distinguishing shape with a prominent oxidation peak in the forward scan contributed to the formic acid oxidation whilst the backward scan is associated with the oxidation of exclusion of carbonaceous species. On the basis of the onset potential and current density, the resulting PtAu nanoparticles showed much higher electrocatalytic activity than other counterparts. The results show an excellent sign of applications for fuel cell.


Subject(s)
Formates/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry , Catalysis , Electrochemistry , Nanotubes, Carbon/chemistry , Oxidation-Reduction
9.
Langmuir ; 26(1): 41-6, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-19791779

ABSTRACT

The thermal stability of SAMs generated from the adsorption of n-octadecanethiol (n-C18), 2-hexadecylpropane-1,3-dithiol (C18C2), 2-hexadecyl-2-methylpropane-1,3-dithiol (C18C3), and 1,1,1-tris(mercaptomethyl)heptadecane (t-C18) on colloidal gold and evaporated "flat" gold was investigated. The optical extinction of the monolayer-protected nanoparticles (MPCs) was monitored as a function of thermal stress by using ultraviolet-visible (UV-vis) spectroscopy, which revealed that the evolution of the surface plasmon resonance varied with the nature of the adsorbate. Specifically, MPCs functionalized with monodentate n-C18 showed the fastest red shift of the surface plasmon resonance while those functionalized with tridentate t-C18 showed the slowest red shift, with those derived from the bidentates C18C2 and C18C3 falling in between, suggesting a correlation between film stability and the degree of chelation. In separate studies, X-ray photoelectron spectroscopy (XPS) was used to evaluate the desorption of the monolayers on both colloidal gold and flat gold as a function of thermal stress. In these studies, SAMs generated from monodentate n-C18 showed the fastest desorption while SAMs generated from tridentate t-C18 showed the slowest desorption, with those derived from the bidentates C18C2 and C18C3 falling in between, again suggesting a correlation between film stability and the degree of chelation. As a whole, the following trend in thermal stability was observed: t-C18 > C18C2 approximately C18C3 > n-C18.

10.
Langmuir ; 25(3): 1265-71, 2009 Feb 03.
Article in English | MEDLINE | ID: mdl-19123812

ABSTRACT

Self-assembled monolayers (SAMs) on gold derived from the direct adsorption of thioacetic acid S-decyl ester (C10SAc) and thioacetic acid S-octadecyl ester (C18SAc) were compared to the corresponding SAMs derived from the analogous adsorption n-decanethiol (C10SH) and n-octadecanethiol (C18SH). All SAMs were characterized using ellipsometry, contact angle goniometry, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). The comparison revealed that the SAMs generated from the thioacetates are not as densely packed and well ordered as the SAMs generated from the thiols. Furthermore, studies of the kinetics of adsorption found that the thioacetates adsorb more slowly than the corresponding thiols.


Subject(s)
Acetates/chemistry , Alkanes/chemistry , Gold/chemistry , Sulfhydryl Compounds/chemistry , Adsorption , Kinetics , Spectrum Analysis
11.
Langmuir ; 24(15): 7750-4, 2008 Aug 05.
Article in English | MEDLINE | ID: mdl-18620437

ABSTRACT

A systematically varying series of monolayer-protected clusters (MPCs) was prepared by exposing small gold nanoparticles ( approximately 2 nm in diameter) to the following four adsorbates: n-octadecanethiol ( n - C18), 2-hexadecylpropane-1,3-dithiol ( C18C2), 2-hexadecyl-2-methylpropane-1,3-dithiol ( C18C3), and 1,1,1-tris(mercaptomethyl)heptadecane ( t - C18). The resultant MPCs were characterized by solubility studies, UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FT-IR). All of the MPCs were soluble in common organic solvents; moreover, analysis by TEM showed that the core dimensions were unaffected by exposure to any of the adsorbates. Separate studies by XPS revealed that the sulfur atoms in all MPCs were predominantly bound to the surface of gold (i.e., approximately 85% or better). Analysis by FT-IR showed that MPCs functionalized with n - C18 possessed alkyl chains having the greatest conformational order in both the solid-state and dispersed in solution; in contrast, those generated from the other three adsorbates were more liquid-like with reduced conformational order (or crystallinity). The rate of nanoparticle decomposition induced by cyanide ions was monitored by UV-vis spectroscopy. While MPCs functionalized with n - C18 showed the fastest rate of decomposition, those functionalized with C18C3 were the most resistant to decomposition. Overall, the following trend in chemical stability was observed, C18C3 >> C18C2 > t - C18 >> n - C18.

12.
J Am Chem Soc ; 130(1): 113-20, 2008 Jan 09.
Article in English | MEDLINE | ID: mdl-18072768

ABSTRACT

Hexadecanethiol (n-C16), 2,2-dimethylhexadecane-1-thiol (DMC16), and the multidentate thiol-based ligands 2-tetradecylpropane-1,3-dithiol (C16C2), 2-methyl-2-tetradecylpropane-1,3-dithiol (C16C3), and 1,1,1-tris(mercaptomethyl)pentadecane (t-C16) were evaluated for their ability to stabilize large gold nanoparticles (>15 nm) in organic solution. Citrate-stabilized gold nanoparticles (20-50 nm) treated with the ligands were extracted from aqueous solution and dispersed into toluene. The degree of aggregation of the gold nanoparticles was monitored visually and further confirmed by UV-vis spectroscopy and dynamic light scattering (DLS). The bidentate ligands (C16C2 and C16C3) and particularly the tridentate ligand (t-C16) showed enhanced abilities to inhibit the aggregation of large gold nanoparticles in organic solution. For gold nanoparticles modified with these multidentate ligands, bound thiolate (S2p3/2 binding energy of 162 eV) was the predominant sulfur species (>85%) as evaluated by X-ray photoelectron spectroscopy (XPS). Although an entropy-based resistance to ordering of the loosely packed surfactant layers was initially considered to be a plausible mechanism for the enhanced stabilization afforded by the multidentate ligands, when taken as a whole, the data presented here support a model in which the enhanced stabilization arises largely (if not solely) from the multidentate chelate effect.


Subject(s)
Gold , Metal Nanoparticles/chemistry , Ligands , Solubility , Solutions , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...