Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Dis Model ; 9(2): 458-473, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38385021

ABSTRACT

Caused by four serotypes, dengue fever is a major public health concern worldwide. Current modeling efforts have mostly focused on primary and heterologous secondary infections, assuming that lifelong immunity prevents reinfections by the same serotype. However, recent findings challenge this assumption, prompting a reevaluation of dengue immunity dynamics. In this study, we develop a within-host modeling framework to explore different scenarios of dengue infections. Unlike previous studies, we go beyond a deterministic framework, considering individual immunological variability. Both deterministic and stochastic models are calibrated using empirical data on viral load and antibody (IgM and IgG) concentrations for all dengue serotypes, incorporating confidence intervals derived from stochastic realizations. With good agreement between the mean of the stochastic realizations and the mean field solution for each model, our approach not only successfully captures primary and heterologous secondary infection dynamics facilitated by antibody-dependent enhancement (ADE) but also provides, for the first time, insights into homotypic reinfection dynamics. Our study discusses the relevance of homotypic reinfections in dengue transmission at the population level, highlighting potential implications for disease prevention and control strategies.

2.
Sci Rep ; 13(1): 10546, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37385997

ABSTRACT

Human mobility has played a critical role in the spread of COVID-19. The understanding of mobility helps in getting information on the acceleration or control of the spread of disease. The COVID-19 virus has been spreading among several locations despite all the best efforts related to its isolation. To comprehend this, a multi-patch mathematical model of COVID-19 is proposed and analysed in this work, where-in limited medical resources, quarantining, and inhibitory behaviour of healthy individuals are incorporated into the model. Furthermore, as an example, the impact of mobility in a three-patch model is studied considering the three worst-hit states of India, i.e. Kerala, Maharashtra and Tamil Nadu, as three patches. Key parameters and the basic reproduction number are estimated from the available data. Through results and analyses, it is seen that Kerala has a higher effective contact rate and has the highest prevalence. Moreover, if Kerala is isolated from Maharashtra or Tamil Nadu, the number of active cases will increase in Kerala but reduce in the other two states. Our findings indicate that the number of active cases will decrease in the high prevalence state and increase in the lower prevalence states if the emigration rate is higher than the immigration rate in the high prevalence state. Overall, proper travel restrictions are to be implemented to reduce or control the spread of disease from the high-prevalence state to other states with lower prevalence rates.


Subject(s)
COVID-19 , Lepidoptera , Humans , Animals , COVID-19/epidemiology , Emigration and Immigration , India/epidemiology , SARS-CoV-2 , Acceleration
4.
J Math Biol ; 86(5): 75, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37058156

ABSTRACT

The burden of sexually transmitted infections (STIs) poses a challenge due to its large negative impact on sexual and reproductive health worldwide. Besides simple prevention measures and available treatment efforts, prophylactic vaccination is a powerful tool for controlling some viral STIs and their associated diseases. Here, we investigate how prophylactic vaccines are best distributed to prevent and control STIs. We consider sex-specific differences in susceptibility to infection, as well as disease severity outcomes. Different vaccination strategies are compared assuming distinct budget constraints that mimic a scarce vaccine stockpile. Vaccination strategies are obtained as solutions to an optimal control problem subject to a two-sex Kermack-McKendrick-type model, where the control variables are the daily vaccination rates for females and males. One important aspect of our approach relies on conceptualizing a limited but specific vaccine stockpile via an isoperimetric constraint. We solve the optimal control problem via Pontryagin's Maximum Principle and obtain a numerical approximation for the solution using a modified version of the forward-backward sweep method that handles the isoperimetric budget constraint in our formulation. The results suggest that for a limited vaccine supply ([Formula: see text]-[Formula: see text] vaccination coverage), one-sex vaccination, prioritizing females, appears to be more beneficial than the inclusion of both sexes into the vaccination program. Whereas, if the vaccine supply is relatively large (enough to reach at least [Formula: see text] coverage), vaccinating both sexes, with a slightly higher rate for females, is optimal and provides an effective and faster approach to reducing the prevalence of the infection.


Subject(s)
Sexually Transmitted Diseases, Viral , Sexually Transmitted Diseases , Vaccines , Male , Female , Humans , Sexually Transmitted Diseases/epidemiology , Sexually Transmitted Diseases/prevention & control , Vaccination , Vaccination Coverage
5.
Phys Life Rev ; 40: 65-92, 2022 03.
Article in English | MEDLINE | ID: mdl-35219611

ABSTRACT

Mathematical models have a long history in epidemiological research, and as the COVID-19 pandemic progressed, research on mathematical modeling became imperative and very influential to understand the epidemiological dynamics of disease spreading. Mathematical models describing dengue fever epidemiological dynamics are found back from 1970. Dengue fever is a viral mosquito-borne infection caused by four antigenically related but distinct serotypes (DENV-1 to DENV-4). With 2.5 billion people at risk of acquiring the infection, it is a major international public health concern. Although most of the cases are asymptomatic or mild, the disease immunological response is complex, with severe disease linked to the antibody-dependent enhancement (ADE) - a disease augmentation phenomenon where pre-existing antibodies to previous dengue infection do not neutralize but rather enhance the new infection. Here, we present a 10-year systematic review on mathematical models for dengue fever epidemiology. Specifically, we review multi-strain frameworks describing host-to-host and vector-host transmission models and within-host models describing viral replication and the respective immune response. Following a detailed literature search in standard scientific databases, different mathematical models in terms of their scope, analytical approach and structural form, including model validation and parameter estimation using empirical data, are described and analyzed. Aiming to identify a consensus on infectious diseases modeling aspects that can contribute to public health authorities for disease control, we revise the current understanding of epidemiological and immunological factors influencing the transmission dynamics of dengue. This review provide insights on general features to be considered to model aspects of real-world public health problems, such as the current epidemiological scenario we are living in.


Subject(s)
COVID-19 , Dengue Virus , Dengue , Animals , Antibodies, Viral , Dengue/epidemiology , Humans , Models, Theoretical , Mosquito Vectors , Pandemics , SARS-CoV-2
6.
Math Methods Appl Sci ; 44(11): 9210-9223, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34230733

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a viral disease which is declared as a pandemic by WHO. This disease is posing a global threat, and almost every country in the world is now affected by this disease. Currently, there is no vaccine for this disease, and because of this, containing COVID-19 is not an easy task. It is noticed that elderly people got severely affected by this disease specially in Europe. In the present paper, we propose and analyze a mathematical model for COVID-19 virus transmission by dividing whole population in old and young groups. We find disease-free equilibrium and the basic reproduction number (R 0). We estimate the parameter corresponding to rate of transmission and rate of detection of COVID-19 using real data from Italy and Spain by least square method. We also perform sensitivity analysis to identify the key parameters which influence the basic reproduction number and hence regulate the transmission dynamics of COVID-19. Finally, we extend our proposed model to optimal control problem to explore the best cost-effective and time-dependent control strategies that can reduce the number of infectives in a specified interval of time.

7.
Eur Phys J Plus ; 136(4): 359, 2021.
Article in English | MEDLINE | ID: mdl-33842186

ABSTRACT

COVID-19 has become a deadly pandemic in the recent times claiming millions of lives worldwide in a grievous manner. Most of the countries in the world have limited number of medical resources (hospitals, beds, ventilators, etc.), and in the case of large outbreak, it becomes very difficult to provide treatment to every infected individual. In this study, we propound a mathematical model where we classify the infected into two subcategories-asymptomatic and symptomatic. This model further accounts for the effect of limited medical resource for infected people and using face masks in combating the pandemic. Focusing on these aspects, we analyze the model and exploit the available data for assessing the pattern in three most affected countries, namely USA, India and Brazil. The developed model is calibrated to fit data for these three countries and estimate the transmission rate of symptomatic, asymptomatic individuals. The rate at which the individuals who are quarantined recover is estimated as well. Along with these estimations, a comparative study based on the basic reproduction number estimated for the three countries is presented. Standard methods of sensitivity analysis are performed to analyze the ways in which basic reproduction number is impacted upon due to changes in different parameters of the model. Further, we obtain disease-free equilibrium and endemic equilibrium of the model. It is observed that backward bifurcation occurs if the capacity of treatment is small and bistable equilibria are shown that makes the system more sensitive to the initial conditions. Sufficient conditions for the local asymptomatic stability of the endemic equilibrium and disease-free equilibrium of the system are obtained. The results of this study imply that to curb the severity of the increasing cases of the disease in these countries, effective strategies to control disease spread should be implemented so that the basic reproduction number can be decreased below the threshold value which is certainly less than unity. The use of protective masks in public is shown to be an important preventive measure to lower disease transmission rate. Also, the quantity of medical resources should increase so that every infected person can get better treatment.

8.
Math Biosci Eng ; 18(1): 182-213, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33525087

ABSTRACT

In this paper, we propose a mathematical model to assess the impacts of using face masks, hospitalization of symptomatic individuals and quarantine of asymptomatic individuals in combating the COVID-19 pandemic in India. We calibrate the proposed model to fit the four data sets, viz. data for the states of Maharashtra, Delhi, Tamil Nadu and overall India, and estimate the rate of infection of susceptible with symptomatic population and recovery rate of quarantined individuals. We also estimate basic reproduction number to illustrate the epidemiological status of the regions under study. Our simulations infer that the infective population will be on increasing curve for Maharashtra and India, and settling for Tamil Nadu and Delhi. Sophisticated techniques of sensitivity analysis are employed to determine the impacts of model parameters on basic reproduction number and symptomatic infected individuals. Our results reveal that to curtail the disease burden in India, specific control strategies should be implemented effectively so that the basic reproduction number is decreased below unity. The three control strategies are shown to be important preventive measures to lower disease transmission rate. The model is further extended to its stochastic counterpart to encapsulate the variation or uncertainty observed in the disease transmissibility. We observe the variability in the infective population and found their distribution at certain fixed time, which shows that for small populations, the stochasticity will play an important role.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Hospitalization , N95 Respirators , Quarantine , Algorithms , Basic Reproduction Number , Disease-Free Survival , Humans , India/epidemiology , Models, Theoretical , Pandemics/prevention & control , Public Health Informatics , Reproducibility of Results , Stochastic Processes , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...