Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Food Chem ; 452: 139528, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38733682

ABSTRACT

Precooling is the rapid removal of field heat in harvested crops to preserve their quality and increase their shelf life. The following study was conducted to understand the importance of precooling and to optimize the precooling condition to extend the storage life of potatoes. Therefore, the study was divided into two components. In the first part, the Kufri Jyoti potatoes were subjected to field heat for 0-64 h, then were precooled for 48 h before sending to cold storage for 60 days. The results demonstrated that when the time delay was doubled, starch content (SC) decreased by 15.86%, reducing sugar content (RSC) increased by 32.71%, ascorbic acid content (AAC) decreased by 5.94% and total plate count (TPC) increased by 20.06%. Microstructural changes in potatoes due to the exposure to field heat were visible in SEM images. These results suggested a decrease in the quality of potatoes with an increase in time delay between harvest and cooling. In the second part of the study, the potatoes were precooled for 48 h at different temperatures (T) (6 °C, 8 °C, and 10 °C) and relative humidity (RH) (87%, 91%, and 95%), and their effect was studied on the same quality parameters after storage. Regression models were developed for each response, and models with non-significant lack of fit were selected for optimization. The analysis of the observations has shown that precooling aided in better quality retention of potatoes during cold storage.


Subject(s)
Food Preservation , Food Storage , Plant Tubers , Solanum tuberosum , Starch , Solanum tuberosum/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Plant Tubers/chemistry , Starch/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Hot Temperature , Cold Temperature
2.
Food Chem ; 447: 138914, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38460320

ABSTRACT

The modification in structural, rheological, and techno-functional characteristics of soy and pea protein isolates (SPI and PPI) due to dielectric barrier discharge cold plasma (DBD-CP) were assessed. The increased carbonyl groups in both samples with cold plasma (CP) treatment led to a reduction in free sulfhydryl groups. Moreover, protein solubility of treated proteins exhibited significant improvements, reaching up to 59.07 % and 41.4 % for SPI and PPI, respectively, at 30 kV for 8 min. Rheological analyses indicated that storage modulus (G') was greater than loss modulus (G″) for CP-treated protein gels. Furthermore, in vitro protein digestibility of SPI exhibited a remarkable improvement (4.78 %) at 30 kV for 6 min compared to PPI (3.23 %). Spectroscopic analyses, including circular dichroism and Fourier Transform-Raman, indicated partial breakdown and loss of α-helix structure in both samples, leading to the aggregation of proteins. Thus, DBD-CP induces reactive oxygen species-mediated oxidation, modifying the secondary and tertiary structures of samples.


Subject(s)
Pea Proteins , Plasma Gases , Soybean Proteins/chemistry , Solubility , Protein Conformation, alpha-Helical
3.
J Sci Food Agric ; 104(3): 1282-1297, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37756432

ABSTRACT

BACKGROUND: Betel leaf is an essential oil (EO)-rich plant from the Piperaceace family used as traditional herbal medicine. The minimum EO yield by the conventional extraction method was increased by adopting cold plasma (CP) as pretreatment. Thus, the present study involved optimizing the CP conditions and analyzing the EO's qualities. RESULTS: Optimization of the CP parameters like electric voltage (A = 25-35 kV), treatment duration (B = 4-12 min) and extraction time (C = 60-180 min) was done for maximum EO yield (R1) and total phenolic content (TPC; R2) using response surface methodology with Box-Behnken design. Maximum EO yield (20.76 ± 1.15 g kg-1 ) and TPC (29.43 ± 1.7 mg GAE mL-1 ) were derived under optimal conditions: A = 34 kV, B = 10 min and C = 110 min. A quadratic polynomial model developed by multiple regression analysis revealed that the three independent variables significantly influenced the oil yield and TPC with R2 values of 0.9909 and 0.9962, respectively. The CP treatment significantly altered the betel leaf powder morphology and increased the EO's radical scavenging capacity and bioactive compounds like chavibetol, chavibetol acetate, hydroxychavicol and γ-muurolene. Conversely, the functional groups, refractive index and specific gravity were unaffected by CP treatment. CONCLUSION: The EO yield and its qualities were improved by applying CP under optimal conditions which can be helpful for scaled-up industrial processes with further studies. The identified bioactive compounds are valuable in the food and pharmaceutical industries. © 2023 Society of Chemical Industry.


Subject(s)
Oils, Volatile , Powders/analysis , Oils, Volatile/analysis , Phenols/chemistry , Plant Leaves/chemistry
4.
Int J Biol Macromol ; 253(Pt 2): 126772, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37683744

ABSTRACT

The goal of the proposed study is to investigate the effects of three different power levels (30, 32 and 34 kV) and exposure time (2, 4 and 8 min) of dielectric barrier discharge (DBD) atmospheric cold plasma treatment on the functional and physicochemical characteristics of taro starch. Investigations were done into how different treatments impact the multi-structural, functional and physicochemical attributes of taro starch. The findings showed that cold plasma treatments substantially impacted starch granule shapes (3.60-2.54 µm), such as reduced aggregations and developed fissures on granule surface due to the generation of an etching by plasma species and enhancement in the surface topography and roughness of treated starch as compared with native by SEM and AFM analysis. Besides this, no variations were detected in the functional groups of taro starch using FT-IR analysis after cold plasma treatments. However, the A-type pattern in the XRD did not affect it, while a reduction in relative crystallinity (14.20-11.50 %) was seen as a function of the active plasma species depolymerization. Furthermore, depending on the cold plasma voltage and treatment time, amylose content (20.12-15.98 %), paste clarity (24.48-31.27 %), solubility (0.41-65.53 %), freezing thaw stability (% syneresis) (32.10-42.58 %), color properties (L*, 94.79-97.52), whiteness index (79.37-84.66), molecular weight distribution (Peak 1, 12.79-5.35 × 108 g/mol; Peak 2, 4.20-1.56 × 107 g/mol) and in vitro digestibility (RDS, 64.10-64.08 %) significantly changed. So, based on these excellent properties, this study suggested that cold plasm-treated taro starch can be used in the field of food packaging material, functional food and pharmaceutical products. Therefore, a potential approach for physically altering starch is plasma treatment.


Subject(s)
Colocasia , Plasma Gases , Starch/chemistry , Colocasia/chemistry , Plasma Gases/chemistry , Spectroscopy, Fourier Transform Infrared , Amylose/chemistry
5.
J Food Sci ; 88(11): 4403-4423, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37755601

ABSTRACT

Forward feed multilayered perception and central composite rotatable design were used to model the nonthermal plasma (NTP) experimental data in artificial neural network (ANN) and response surface methodology, respectively. The ANN was found to be more accurate in modeling the experimental dataset. The NTP process parameters (voltage and time) were optimized for pineapple juice within the range of 25-45 kV and 120-900 s using an ANN coupled with the genetic algorithm (ANN-GA). After 176 generations of GA, the ANN-GA approach produced the optimal condition, 38 kV and 631 s, and caused the inactivation of peroxidase (POD) and bromelain by 87.24% and 51.04%, respectively. However, 100.32% of the overall antioxidant capacity and 89.96% of the ascorbic acid were maintained in the optimized sample with a total color change (ΔE) of less than 1.97 at all plasma treatment conditions. Based on optimal conditions, NTP provides a sufficient level of POD inactivation combined with excellent phenolic component extractability and high antioxidant retention. Furthermore, plasma treatment had an insignificant effect (p > 0.05) on the physicochemical attributes (pH, total soluble solid, and titratable acidity) of juice samples. From the intensity peak of the Fourier-transform infrared spectroscopy analysis, it was found that the sugar components and phenolic compounds of plasma-treated juice were effectively preserved compared to the thermal-treated juice.


Subject(s)
Ananas , Antioxidants , Antioxidants/analysis , Ananas/chemistry , Ascorbic Acid/analysis , Fruit and Vegetable Juices/analysis , Phytochemicals
6.
J Food Sci ; 88(9): 3905-3919, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37548638

ABSTRACT

The nonthermal plasma (NTP) technology is a promising nonthermal technology that can be employed for pasteurization of fruit juice. The effect of NTP on the natural microbiota, namely, aerobic mesophiles (AM), and yeasts and molds (YM) in pineapple juice were examined in the experimental range of 25-45 kV up to 10 min treatment time. At an applied voltage of 45 kV, the AM and YM count reductions of 4.7 and 4.1 log cfu/mL were obtained at the end of the 14-min treatment. The inactivation kinetics of microbes were attempted to be explained using nonlinear models, including Weibull + tail, Geeraerd, log-logistic, Coroller, and Cerf. The residual population (Nres ) model parameter in the Geeraerd model explained the tailing behavior of microbes. Furthermore, the estimated values for the scale parameter and destruction rate constants were used to describe the sensitive and resistant percentages of the microbial population. According to statistical parameters (R2 : 0.978-0.999, RMSE: 0.034-0.277) and validation indicators (accuracy factor: 1.013-1.152, bias factor: 0.985-1.12), all models performed well. Akaike's theory was used to select the best-fit model, and the Coroller model was shown to be the most accurate one for AM and YM, exhibiting the lowest Akaike increment (Δi  = 0). PRACTICAL APPLICATION: Nonthermal plasma may be used as an alternate nonthermal process for this product in order to meet customer appeal for safe and nutritious juice with minimal processing. The goal of this work was to produce a nutritious and safe pineapple juice by using nonthermal processing.


Subject(s)
Ananas , Microbiota , Colony Count, Microbial , Kinetics , Fungi , Yeasts
7.
J Food Sci Technol ; 60(8): 2105-2120, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37273559

ABSTRACT

Edible insects (EI) are also becoming as a part of the diet due to their nutritional value and health benefits in many regions of the world. These EI are inexhaustible sources accessible by garnering from the wild with high feed conversion efficiency. Appreciating the budding of EI in justifiable food production, enlightening food security and biodiversity conversion, is promising a sufficient supply of the insect resource for future food to the world. These insects are processed to develop new products, improve organoleptic and nutritional parameters as well as the extension of shelf life. In this review, we discuss the edible insect characteristics, the potential application of EI in food industry, processing, pretreatments, drying, extraction of edible compounds like protein, lipid and chitin various food products formulation, safety regulation. Availability of broad nutritional spectrum of EI includes protein, mono and poly unsaturaturated fatty acids, amino acids, vitamins, amino aids and minerals has been used as an ingredient in development of various forms of food products such as flours in the form of whole insect powder, protein isolate, canned products, extruded products, hard candies, spreads, liquor infusion, cookies and other products.

8.
Chemosphere ; 332: 138901, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37169095

ABSTRACT

Centella asiatica L. (CA) is a medicinal plant that gained significant commercial and research interest because of its bioactive compounds, which have functional properties such as antioxidant activity. However, it must be dried before use to improve its shelf life and prepare it for food and pharmaceutical applications. Therefore, in this investigation CA leaves were pre-treated with blanching and cold plasma activated water (CPAW), followed by recirculatory hot air and vacuum drying at 40, 50, and 60 °C. Vacuum-drying took 150-720 min, while hot-air drying took 60-180 min to dry. Page and Logarithmic models best fit for leaf drying kinetics, according to AIC, with R2 between 0.966 and 0.999 and RMSE between 0.001 and 0.069. CPAW pre-treatment increased leaf quality more than blanching in vacuum drying. Drying leaves at 40 °C boosted antioxidants (4021.462 µg TE (g dw)-1 and 3.356 mg GAEAC (g dw)-1), TPC (35.049 mg GAE (g dw)-1), and TFC (311.274 mg QE (g dw)-1) and is recommended. Vacuum-drying with CPAW pre-treatment preserved leaf microstructure better than hot-air drying. This study illuminates CA leaf drying behaviour and allow mass production without damaging bioactive components. These results could be used as a roadmap for future technological advances that will make it possible to use the bioactive components of CA in food formulation.


Subject(s)
Centella , Plasma Gases , Water/chemistry , Plasma Gases/analysis , Kinetics , Antioxidants/analysis , Plant Leaves/chemistry
9.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37111369

ABSTRACT

Calendula officinalis Linn. (CO) is a popular medicinal plant from the plant kingdom's Asteraceae family that has been used for millennia. This plant contains flavonoids, triterpenoids, glycosides, saponins, carotenoids, volatile oil, amino acids, steroids, sterols, and quinines. These chemical constituents confer multifaceted biological effects such as anti-inflammatory, anti-cancer, antihelminthic, antidiabetes, wound healing, hepatoprotective, and antioxidant activities. Additionally, it is employed in cases of certain burns and gastrointestinal, gynecological, ocular, and skin conditions. In this review, we have discussed recent research from the last five years on the therapeutic applications of CO and emphasized its myriad capabilities as a traditional medicine. We have also elucidated CO's molecular mechanisms and recent clinical studies. Overall, this review intends to summarize, fill in the gaps in the existing research, and provide a wealth of possibilities for researchers working to validate traditional claims and advance the safe and effective use of CO in treating various ailments.

10.
J Food Sci ; 88(4): 1533-1552, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36866392

ABSTRACT

Cold plasma treatment of kiwifruit juice was studied in the domain of 18-30 kV of voltage, 2-6 mm of juice depth, and 6-10 min of treatment time using the response surface methodology (RSM). The experimental design utilized was a central composite rotatable design. The effect of voltage, juice depth, and treatment time on the various responses, namely peroxidase activity, color, total phenolic content, ascorbic acid, total antioxidant activity, and total flavonoid content, was examined. While modeling, the artificial neural network (ANN) showed greater predictive capability than RSM as the coefficient of determination (R2 ) value of responses was greater in the case of ANN (0.9538-0.9996) than in RSM (0.9041-0.9853). The mean square error value was also less in the case of ANN than in RSM. The ANN was coupled with a genetic algorithm (GA) for optimization. The optimum condition obtained from ANN-GA was 30 kV, 5 mm, and 6.7 min, respectively.


Subject(s)
Plasma Gases , Neural Networks, Computer , Fruit , Flavonoids , Nutritive Value
11.
Crit Rev Food Sci Nutr ; 62(24): 6577-6604, 2022.
Article in English | MEDLINE | ID: mdl-33775191

ABSTRACT

Starch is one of the organic compounds after cellulose found most abundantly in nature. Starch significantly varies in their different properties like physical, chemical, thermal, morphological and functional. Therefore, starch is modified to increase the beneficial characteristics and remove the shortcomings issues of native starches. The modification methods can change the extremely flexible polymer of starch with their modified physical and chemical properties. These altered structural attributes are of great technological values which have a wide industrial potential in food and non-food. Among them, the production of novel starches is mainly one that evolves with new value-added and functional properties is on high industrial demands. This paper provides an overview of the rice starch components and their effect on the technological and physicochemical properties of obtained starch. Besides, the tuned techno-functional properties of the modified starches through chemical modification means are highlighted.HighlightsNative and modified starches varies largely in physicochemical and functional traits.Modified physical and chemical properties of starch can change the extremely flexible polymer of starch.Techno-functional properties of the modified starches through chemical modification means are highlighted.Dual modification improves the starch functionality and increases the industrial applications.Production of novel starches is on high industrial demands because it mainly evolves with new value added and functional properties.


Subject(s)
Oryza , Oryza/chemistry , Starch/chemistry
12.
J Biomol Struct Dyn ; 40(23): 12917-12931, 2022.
Article in English | MEDLINE | ID: mdl-34569409

ABSTRACT

Pomegranate peel, the waste product generated from pomegranate fruit, has prophylactic properties, such as antimicrobial, anti-malarial, and controls respiratory infections and influenza. Based on the previous literature and need of the hour, molecular docking was performed to evaluate the inhibitory effects of major pomegranate peel polyphenols against COVID-19. Among the 44 studied compounds, 37 polyphenols show interaction with the catalytic dyad of the Mpro protease and 18 polyphenols have a higher binding affinity than that of the Mpro protease inhibitor (N3), indicating their high probability of binding at ACE2: SARS-CoV-2 interface. Furthermore, several polyphenols studied in this work are found to have higher binding affinity as compared to those of hydroxychloroquine, lopinavir, nelfinavir, and curcumin, some of which have been earlier tested against COVID-19. Further, molecular dynamics simulations (200 ns) for Mpro-polyphenols including pelargonidin3-glucoside, quercetin3-O-rhamnoside, cyanidin3-glucoside and punicalin revealed highly stable complexes with less conformational fluctuations and similar degree of compactness. Estimation of total number of intermolecular hydrogen bonds and binding free energy confirmed the stability of these Mpro-polyphenol complexes over Mpro-curcumin complex. Based on the greater binding affinity of polyphenols of pomegranate peel towards Mpro as compared to that of curcumin, pomegranate peel may be considered in any herbal medicinal formulation or may be incorporated into daily diets for prevention of COVID-19.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Curcumin , Pomegranate , Fruit , Molecular Dynamics Simulation , Curcumin/pharmacology , Molecular Docking Simulation , COVID-19/prevention & control , SARS-CoV-2 , Glucosides , Protease Inhibitors
13.
J Texture Stud ; 53(6): 809-819, 2022 10.
Article in English | MEDLINE | ID: mdl-34580884

ABSTRACT

In the current study, soybean aqueous extract (SAE)-based nanocomposite film was developed by incorporating cellulose nanofiber (CNF) at various concentrations (0-10%). Effect of nanoreinforcement on essential properties of the nanocomposite film such as barrier, mechanical, water affinity, and optical properties were evaluated. Homogeneous films with improved barrier and mechanical properties were observed until 6% CNF, beyond which considerable reduction in desirable properties was noticed due to nanoparticle's agglomeration effect. Furthermore, the prediction of the mechanical and barrier properties of nanocomposite film was performed with mathematical models such as modified Halpin-Tsai and modified Nielsen equations, respectively. The model-fitting results reveal that the theoretically predicted values were in close agreement with the experimental values. Hence, these models were well suited for predicting respective properties. Model prediction also implies that the increase in the aspect ratio of fillers can considerably cause a reduction in water vapor permeability and improvement in mechanical properties. Suitability of developed film as cheese slice separator was evaluated: they had equivalent outcomes in terms of easiness in slice separation and wholeness of slices after separation compared to the commercial material.

14.
Food Res Int ; 150(Pt A): 110746, 2021 12.
Article in English | MEDLINE | ID: mdl-34865764

ABSTRACT

Application of high-value algal metabolites (HVAMs) in cosmetics, additives, pigments, foods and medicines are very important. These HVAMs can be obtained from the cultivation of micro- and macro-algae. These metabolites can benefit human and animal health in a physiological and nutritional manner. However, because of conventional extraction methods and their energy and the use of pollutant solvents, the availability of HVAMs from algae remains insufficient. Receiving their sustainability and environmental benefits have recently made green extraction technologies for HVAM extractions more desirable. But very little information is available about the technology of green extraction of algae from these HVAM. This review, therefore, highlights the supercritical fluid extraction (SCFE) as principal green extraction technologyand theirideal parameters for extracting HVAMs. In first, general information is provided concerning the HVAMs and their components of macro and micro origin. The review also includes a description of SCFE technology's properties, instrumentation operation, solvents used, and the merits and demerits. Moreover, there are several HVAMs associated with their numerous high-level biological activities which include high-level antioxidant, anti-inflammatory, anticancer and antimicrobial activity and have potential health-beneficial effects in humans since they are all HVAMs, such as foods and nutraceuticals. Finally, it provides future insights, obstacles, and suggestions for selecting the right technologies for extraction.


Subject(s)
Chromatography, Supercritical Fluid , Animals , Antioxidants , Dietary Supplements , Humans , Plants , Technology
15.
Front Nutr ; 8: 747956, 2021.
Article in English | MEDLINE | ID: mdl-34621776

ABSTRACT

An entirely unknown species of coronavirus (COVID-19) outbreak occurred in December 2019. COVID-19 has already affected more than 180 million people causing ~3.91 million deaths globally till the end of June 2021. During this emergency, the food nutraceuticals can be a potential therapeutic candidate. Curcumin is the natural and safe bioactive compound of the turmeric (Curcuma longa L.) plant and is known to possess potent anti-microbial and immuno-modulatory properties. This review paper covers the various extraction and quantification techniques of curcumin and its usage to produce functional food. The potential of curcumin in boosting the immune system has also been explored. The review will help develop insight and new knowledge about curcumin's role as an immune-booster and therapeutic agent against COVID-19. The manuscript will also encourage and assist the scientists and researchers who have an association with drug development, pharmacology, functional foods, and nutraceuticals to develop curcumin-based formulations.

16.
Front Nutr ; 8: 673174, 2021.
Article in English | MEDLINE | ID: mdl-34095193

ABSTRACT

In December 2019, the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)-a novel coronavirus was identified which was quickly distributed to more than 100 countries around the world. There are currently no approved treatments available but only a few preventive measures are available. Among them, maintaining strong immunity through the intake of functional foods is a sustainable solution to resist the virus attack. For this, bioactive compounds (BACs) are delivered safely inside the body through encapsulated food items. Encapsulated food products have benefits such as high stability and bioavailability, sustained release of functional compounds; inhibit the undesired interaction, and high antimicrobial and antioxidant activity. Several BACs such as ω-3 fatty acid, curcumin, vitamins, essential oils, antimicrobials, and probiotic bacteria can be encapsulated which exhibit immunological activity through different mechanisms. These encapsulated compounds can be recommended for use by various researchers, scientists, and industrial peoples to develop functional foods that can improve immunity to withstand the coronavirus disease 2019 (COVID-19) outbreak in the future. Encapsulated BACs, upon incorporation into food, offer increased functionality and facilitate their potential use as an immunity booster. This review paper aims to target various encapsulated food products and their role in improving the immunity system. The bioactive components like antioxidants, minerals, vitamins, polyphenols, omega (ω)-3 fatty acids, lycopene, probiotics, etc. which boost the immunity and may be a potential measure to prevent COVID-19 outbreak were comprehensively discussed. This article also highlights the potential mechanisms; a BAC undergoes, to improve the immune system.

17.
ACS Food Sci Technol ; 1(10): 1776-1786, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-37556283

ABSTRACT

Mango processing waste (MPW) is an inexpensive and rich source of valuable substances. Hence, the mango kernel powder (MKP) from four cultivars (Chausa, Neelum, Barahmasi, and Dashehari) was characterized for the selection of the best cultivar. The MKP of the best cultivar (Dashehari) was analyzed for the profiling of polyphenols using LC-MS/MS in both modes of ionization (positive and negative) and indicated the presence of 50 compounds with specific retention times. After identification, gallic acid (GA), an important industrial compound, was targeted and purified followed by its confirmation using NMR (600 MHz) and HRMS. The antioxidant activity (IC50: 1.96 µg/mL) of extracted GA proposes its use as a natural antioxidant in novel food formulations. Additionally, SARS-CoV-2 main protease (Mpro) was selected for molecular docking based virtual screening of seven major polyphenols (MKP), and the results were compared with hydroxychloroquine. The docking scores of targeted polyphenols revealed that three compounds (epicatechin, mangiferin, and quercetin) exhibited appreciable proteolytic activity against Mpro. In this way, it is a favorable approach toward environmental safety on the standpoint of green chemistry owing to the use of food processing waste and elimination of the waste dumping/composting problems.

18.
Foods ; 9(7)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664254

ABSTRACT

One of the major advantages of 3D food printing is the customizability in terms of structure, design, and nutritional content. However, printability of the ingredients and the quality of the 3D printed food products are dependent on several product and printing parameters. In this study, nutrient dense cookies were developed with underutilized ingredients including jackfruit seed powder and finger millet powder as base materials using 3D food printing. The hardness, rheological behavior, and microstructure of 3D printed cookies with different products (e.g., water butter ratio) and printing (e.g., fill density and temperature) parameters were analyzed. The 3D printed cookies were developed by extruding at 27 and 30 °C with fill density values of 50%, 70%, 90%, and 100% and water butter ratios of 3:10 and 6:5. The 3D-printed cookie dough exhibited a more elastic behavior with higher storage modulus values than the loss modulus. The hardness of the baked cookies was influenced by printing temperature, fill density, and water butter ratio of 3D printed cookie dough and their interactions. The closed porosity of 3D printed cookies increased while the open porosity decreased with an increase in fill density. The baking times required were longer for 3D-printed cookies with higher fill density values. Overall, this study shows the importance of considering the specific ingredient and printing parameters to develop high quality 3D-printed cookies.

19.
Food Res Int ; 130: 108924, 2020 04.
Article in English | MEDLINE | ID: mdl-32156374

ABSTRACT

The aroma in rice and its products is one of the important quality characteristics. It is contributed by more than 500 different volatile compounds and the extraction and quantification of aroma compounds are equally essential, determining the threshold of aroma. Till date,a complete review of the aromatic consideration of rice is lacking in the literature. Therefore, thepresent paper is prepared with the aim of summarizing the data and other significant informationin respect of the aroma characteristics of different types of rice and rice productsfrom the early 1980s to 2019.This review discusses all the studies on extraction, isolation, and characterization of volatile aroma compounds (VACs) done in different types of rice and their products which will further help researchers to continue their work on the lacking aspects of rice aroma. A special focus has been given to the 2-AP compound which signified the difference between aromatic and non-aromatic rice cultivars.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Oryza/chemistry , Solid Phase Microextraction/methods , Volatile Organic Compounds/chemistry
20.
J Food Sci Technol ; 52(4): 2013-22, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25829581

ABSTRACT

Oyster mushroom samples were dried under selected convective, microwave-convective drying conditions in a recirculatory hot-air dryer and microwave assisted hot-air dryer (2.45 GHz, 1.5 kW) respectively. Only falling rate period and no constant rate period, was exhibited in both the drying technique. The experimental moisture loss data were fitted to selected semi-theoretical thin-layer drying equations. The mathematical models were compared according to three statistical parameters, i.e. correlation coefficient, reduced chi-square and residual mean sum of squares. Among all the models, Midilli et al. model was found to have the best fit as suggested by 0.99 of square correlation coefficient, 0.000043 of reduced-chi square and 0.0023 of residual sum of square. The highest effective moisture diffusivity varying from 10.16 × 10(-8) to 16.18 × 10(-8) m(2)/s over the temperature range was observed in microwave-convective drying at an air velocity of 1.5 m/s and the activation energy was calculated to be 16.95 kJ/mol. The above findings can aid to select the most suitable operating conditions, so as to design drying equipment accordingly.

SELECTION OF CITATIONS
SEARCH DETAIL
...