Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Inhal Toxicol ; 36(4): 228-239, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38669072

ABSTRACT

OBJECTIVE: The present study focuses on residential areas of Delhi to identify the elevated levels of ambient PM10 and PM2.5 due to biomass burning followed by the coloring activity in the Holi festival celebrated at the end of the winter season. This study also focuses on the health risk assessment and mortality among different age groups due to the change in particulate matter levels during the Holi festival in Delhi, India. MATERIALS AND METHODS: Secondary data of particulate matters have been procured from the Central Pollution Control Board (CPCB), Delhi Pollution Control Committee (DPCC), and Indian Institute of Tropical Meteorology (IITM), Pune for the period of the pre-, during, and post-Holi period for the year 2018-2020 at four selected residential locations in Delhi, India. The health impacts of particle inhalation were quantified using the AirQ + models. RESULTS: The results indicated the levels of PM10 and PM2.5 rise about 3-4 times higher during the Holi festival than on normal days, resulting in health risks and causing an excess number of mortality and Asthma cases in Delhi. Such cases were also found to be higher in 2018, followed by 2019 and 2020 at all the selected locations in Delhi. CONCLUSIONS: The study linked the increasing particulate levels in the Holi festival with the increased health risk through short-term exposure of the population. The excess number of cases (ENCs) of mortality, all causes of mortality among adults (age > 30 years) associated with short-term exposure to particulate were also identified.


Subject(s)
Air Pollutants , Holidays , Inhalation Exposure , Particulate Matter , Particulate Matter/analysis , Humans , India/epidemiology , Inhalation Exposure/adverse effects , Inhalation Exposure/analysis , Air Pollutants/analysis , Air Pollutants/adverse effects , Adult , Middle Aged , Young Adult , Child , Adolescent , Male , Risk Assessment , Female , Asthma/epidemiology , Air Pollution/adverse effects , Air Pollution/analysis , Aged , Child, Preschool
2.
Dalton Trans ; 52(32): 11303-11314, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37530180

ABSTRACT

Two-dimensional (2D) graphene oxide nanosheets serve as an excellent support material for immobilizing metal complexes to deal with the drawbacks of homogeneous catalysis. In this work, we report a magnetically retrievable graphene oxide (MGO) based copper nanocatalytic system that has been efficiently exploited for obtaining a series of pharmaceutically and biologically active benzoxazole scaffolds. The nanocatalyst was designed by covalent immobilization of dehydroacetic acid (DHA) onto a magnetic amino-silanized graphene oxide nanosupport which was accompanied by its metallation with copper acetate. The structure of the synthesized MGO hybrid material (Cu@DHA@APTES@MGO) was characterized by numerous physico-chemical techniques such as transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometry (VSM), elemental mapping, atomic absorption spectroscopy (AAS), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) surface area analysis and energy-dispersive X-ray fluorescence spectroscopy (ED-XRF). The fabricated architectures exhibited high efficiency for cyclization of 2-aminophenols and ß-diketones with wide substrate scope, excellent functional group tolerance, a higher conversion percentage (>98%) and a high turnover number (TON). The exceptional catalytic activity could be attributed to the 2D architecture of graphene oxide which provides space for trapping of reactants between 2D graphitic overlayers and metal surfaces and the reaction proceeds to afford benzoxazole products with moderate to excellent conversion percentages. Notably, this nanocomposite could be recovered easily through an external magnetic force and reused for multiple runs without any appreciable loss in its catalytic efficacy.

3.
Heliyon ; 7(5): e06973, 2021 May.
Article in English | MEDLINE | ID: mdl-34027176

ABSTRACT

Crop residue burning (CRB) over northern India is a major air quality and human health issue. The present study assesses the impact of PM10, PM2.5, NO2 and SO2, emitted during CRB activities in Haryana on the air quality of Delhi. The transition from pre-burning to burning period, in both rabi and kharif seasons, shows considerable increase in pollutant concentrations. PM10 and PM2.5 concentrations exceeded NAAQS limits by 2-3 times, while NO2 and SO2 stayed within the limits. MODIS fire observations used to estimate CRB fire counts (confidence ≥80%) shows that rabi (burning period) fires in Haryana are ~3 times higher and more intense than in kharif. Furthermore, backward trajectories shows air mass movement from Haryana, Punjab and Pakistan. Thus, pollutants emitted reach Delhi via air masses, deteriorating its air quality. Meteorological conditions influence pollutant concentrations during both seasons. Frequent dust storms in rabi, and Dusshera and Diwali firework celebrations in kharif season exacerbate air pollution. In rabi, PM10 and PM2.5 have a significant negative association with (relative humidity) RH and positive association with (air temperature) AT. High AT during pre-monsoon, accompanied by low RH, loosens up soil particles and they can easily disperse. Stronger winds in rabi season promote NO2 and SO2 dispersion. In kharif, lower AT, higher RH and slower winds exist. Both PM10 and PM2.5 have a negative association with AT and (wind speed) WS. With lower temperature and slower winds during winter, pollutants are trapped within the boundary layer and are unable to disperse. As expected, NO2 has a significant negative association with AT in Haryana. However, in case of Delhi, the association is significant but positive, and could be due to the odd-even scheme imposed by the Delhi government. More research is needed to determine the health effects of Haryana's rabi CRB activities on Delhi.

4.
Small ; 17(34): e2007840, 2021 08.
Article in English | MEDLINE | ID: mdl-33899324

ABSTRACT

A noticeable interest and steady rise in research studies reporting the design and assessment of smart adsorbents for sequestering aqueous metal ions and xenobiotics has occurred in the last decade. This motivates compiling and reviewing the characteristics, potentials, and performances of this new adsorbent generation's metal ion and xenobiotics sequestration. Herein, stimuli-responsive adsorbents that respond to its media (as internal triggers; e.g., pH and temperature) or external triggers (e.g., magnetic field and light) are highlighted. Readers are then introduced to selective adsorbents that selectively capture materials of interest. This is followed by a discussion of self-healing and self-cleaning adsorbents. Finally, the review ends with research gaps in material designs.


Subject(s)
Environmental Restoration and Remediation , Water Pollutants, Chemical , Water Purification , Adsorption , Metals , Water Pollutants, Chemical/analysis
5.
Dalton Trans ; 50(3): 890-898, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33350417

ABSTRACT

In the present work, we report the design and fabrication of a copper-containing ionic liquid supported magnetic nanocatalyst via a convenient and straightforward synthetic approach for the formation of 2-phenylquinazolin-4(3H)-ones using o-aminobenzamide and benzaldehydes as the reaction partners. The successful formation and properties of the as-prepared catalyst have been thoroughly investigated using diverse physico-chemical techniques including FT-IR, XRD, FE-SEM, TEM, ICP, VSM, BET and TGA. Using this nanocatalytic system, a variety of 2-phenylquinazolin-4(3H)-ones are synthesized in excellent yields with operational ease and short reaction times in an environmentally preferable solvent under open air and without using any external oxidizing agent. Besides, the catalyst possessed facile magnetic recoverability and remarkable reusability for six consecutive runs without any appreciable decrease in the catalytic efficiency.

6.
Front Chem ; 9: 773855, 2021.
Article in English | MEDLINE | ID: mdl-35111725

ABSTRACT

A highly efficient magnetically separable copper nanocatalyst has been developed for decarboxylative cross-coupling reaction for the alkynylation of haloarenes using alkynoic acid as a reaction partner. The chemical nature, morphology, size, and magnetic properties of the prepared nanocatalyst were studied by SEM, TEM, EDS, FT-IR, VSM, and ICP techniques. Remarkably, this catalyst represents the first successful copper based heterogeneous system for this type of coupling that provides a low-cost, stable, and environmentally friendly magnetically recoverable entity that can be re-used for seven consecutive runs without appreciable loss in its catalytic performance.

7.
Indian J Exp Biol ; 52(3): 197-206, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24669662

ABSTRACT

Peptide: N-glycanase (PNGase) enzyme is found throughout eukaryotes and plays an important role in the misfolded glycoprotein degradation pathway. This communication reports the expression patterns of the pngase transcript (as studied by the analysis of beta-galactosidase reporter driven by the putative pngase promoter) and protein (as studied by the analysis of beta-galactosidase reporter expressed under the putative pngase promoter as a fusion with the pngase ORF) during development and further elucidated the developmental defects of the cells lacking PNGase (png(-)). The results show that the DdPNGase is an essential protein expressed throughout development and beta-galactosidase activity was present in the anterior part of the slug. In structures derived from a null mutant for pngase, the prestalk A and AO patterning was expanded and covered a large section of the prespore region of the slugs. When developed as chimeras with wild type, the png(-) cells preferentially populate the prestalk/stalk region. When the mutants were mixed in higher ratios, they also tend to form the prespore/spore cells. The results emphasize that the DdPNGase has an essential role during development and the mutants have defects in a system that changes the physiological dynamics in the prespore cells. DdPNGase play a role in development both during aggregation and in the differentiation of prespore cells.


Subject(s)
Cell Differentiation/genetics , Dictyostelium/genetics , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/genetics , Chimera , Dictyostelium/growth & development , Galactosidases/biosynthesis , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/biosynthesis , Spores/cytology , Spores/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...