Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Am J Transl Res ; 16(4): 1337-1352, 2024.
Article in English | MEDLINE | ID: mdl-38715825

ABSTRACT

OBJECTIVES: Breast cancer is the most common cancer and the leading cause of cancer-related death among women. An Estrogen Receptor (ER) antagonist called tamoxifen is used as an adjuvant therapy for ER-positive breast cancers. Approximately 40% of patients develop tamoxifen resistance (TAMR) while receiving treatment. Cancer cells can rewire their metabolism to develop resistant phenotypes, and their metabolic state determines how receptive they are to chemotherapy. METHODS: Metabolite extraction from human MCF-7 and MCF-7/TAMR cells was done using the methanol-methanol-water extraction method. After treating the dried samples with methoxamine hydrochloride in pyridine, the samples were derivatized with 2,2,2-Trifluoro-N-methyl-N-(trimethylsilyl)-acetamide, and Chlorotrimethylsilane (MSTFA + 1% TMCS). The Gas chromatography/mass spectrometry (GC-MS) raw data were processed using MSdial and Metaboanalyst for analysis. RESULTS: Univariate analysis revealed that 35 metabolites were elevated in TAMR cells whereas 25 metabolites were downregulated. N-acetyl-D-glucosamine, lysine, uracil, tyrosine, alanine, and o-phosphoserine were upregulated in TAMR cells, while hydroxyproline, glutamine, N-acetyl-L-aspartic acid, threonic acid, pyroglutamic acid, glutamine, o-phosphoethanolamine, oxoglutaric acid, and myoinositol were found to be downregulated. Multivariate analysis revealed a distinct separation between the two cell lines, as evidenced by their metabolite levels. The enriched pathways of deregulated metabolites included valine, leucine, and isoleucine degradation, Citric Acid Cycle, Warburg effect, Malate-Aspartate shuttle, glucose-alanine cycle, propanoate metabolism, and Phospholipid biosynthesis. CONCLUSION: This study revealed dysregulation of various metabolic processes in TAMR cells, which may be crucial in elucidating the molecular basis of the mechanisms underlying acquired tamoxifen resistance.

2.
BMC Cancer ; 24(1): 323, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459456

ABSTRACT

BACKGROUND: Increased mitochondrial activities contributing to cancer cell proliferation, invasion, and metastasis have been reported in different cancers; however, studies on the therapeutic targeting of mitochondria in regulating cell proliferation and invasiveness are limited. Because mitochondria are believed to have evolved through bacterial invasion in mammalian cells, antibiotics could provide an alternative approach to target mitochondria, especially in cancers with increased mitochondrial activities. In this study, we investigated the therapeutic potential of bacteriostatic antibiotics in regulating the growth potential of colorectal cancer (CRC) cells, which differ in their metastatic potential and mitochondrial functions. METHODS: A combination of viability, cell migration, and spheroid formation assays was used to measure the effect on metastatic potential. The effect on mitochondrial mechanisms was investigated by measuring mitochondrial DNA copy number by qPCR, biogenesis (by qPCR and immunoblotting), and functions by measuring reactive oxygen species, membrane potential, and ATP using standard methods. In addition, the effect on assembly and activities of respiratory chain (RC) complexes was determined using blue native gel electrophoresis and in-gel assays, respectively). Changes in metastatic and cell death signaling were measured by immunoblotting with specific marker proteins and compared between CRC cells. RESULTS: Both tigecycline and tetracycline effectively reduced the viability, migration, and spheroid-forming capacity of highly metastatic CRC cells. This increased sensitivity was attributed to reduced mtDNA content, mitochondrial biogenesis, ATP content, membrane potential, and increased oxidative stress. Specifically, complex I assembly and activity were significantly inhibited by these antibiotics in high-metastatic cells. Significant down-regulation in the expression of mitochondrial-mediated survival pathways, such as phospho-AKT, cMYC, phospho-SRC, and phospho-FAK, and upregulation in cell death (apoptosis and autophagy) were observed, which contributed to the enhanced sensitivity of highly metastatic CRC cells toward these antibiotics. In addition, the combined treatment of the CRC chemotherapeutic agent oxaliplatin with tigecycline/tetracycline at physiological concentrations effectively sensitized these cells at early time points. CONCLUSION: Altogether, our study reports that bacterial antibiotics, such as tigecycline and tetracycline, target mitochondrial functions specifically mitochondrial complex I architecture and activity and would be useful in combination with cancer chemotherapeutics for high metastatic conditions.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Animals , Humans , Tigecycline/metabolism , Tigecycline/pharmacology , Drug Repositioning , Cell Line, Tumor , Mitochondria/metabolism , Anti-Bacterial Agents/pharmacology , Colonic Neoplasms/metabolism , Cell Proliferation , Apoptosis , Adenosine Triphosphate/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Mammals/metabolism
3.
Eur J Med Chem ; 268: 116162, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38394930

ABSTRACT

Human African trypanosomiasis (HAT), or sleeping sickness, is a neglected tropical disease with current treatments marred by severe side effects or delivery issues. To identify novel classes of compounds for the treatment of HAT, high throughput screening (HTS) had previously been conducted on bloodstream forms of T. b. brucei, a model organism closely related to the human pathogens T. b. gambiense and T. b. rhodesiense. This HTS had identified a number of structural classes with potent bioactivity against T. b. brucei (IC50 ≤ 10 µM) with selectivity over mammalian cell-lines (selectivity index of ≥10). One of the confirmed hits was an aroyl guanidine derivative. Deemed to be chemically tractable with attractive physicochemical properties, here we explore this class further to develop the SAR landscape. We also report the influence of the elucidated SAR on parasite metabolism, to gain insight into possible modes of action of this class. Of note, two sub-classes of analogues were identified that generated opposing metabolic responses involving disrupted energy metabolism. This knowledge may guide the future design of more potent inhibitors, while retaining the desirable physicochemical properties and an excellent selectivity profile of the current compound class.


Subject(s)
Parasites , Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosoma , Trypanosomiasis, African , Animals , Humans , Trypanocidal Agents/chemistry , Trypanosoma brucei rhodesiense , Guanidine/pharmacology , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Guanidines/pharmacology , Energy Metabolism , Mammals
4.
Sensors (Basel) ; 23(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36904622

ABSTRACT

The employability of photonics technology in the modern era's highly demanding and sophisticated domain of aerospace and submarines has been an appealing challenge for the scientific communities. In this paper, we review our main results achieved so far on the use of optical fiber sensors for safety and security in innovative aerospace and submarine applications. In particular, recent results of in-field applications of optical fiber sensors in aircraft monitoring, from a weight and balance analysis to vehicle Structural Health Monitoring (SHM) and Landing Gear (LG) monitoring, are presented and discussed. Moreover, underwater fiber-optic hydrophones are presented from the design to marine application.

5.
Sensors (Basel) ; 23(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36904762

ABSTRACT

Our group, involving researchers from different universities in Campania, Italy, has been working for the last twenty years in the field of photonic sensors for safety and security in healthcare, industrial and environment applications. This is the first in a series of three companion papers. In this paper, we introduce the main concepts of the technologies employed for the realization of our photonic sensors. Then, we review our main results concerning the innovative applications for infrastructural and transportation monitoring.

6.
Sensors (Basel) ; 23(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36991894

ABSTRACT

In order to complete this set of three companion papers, in this last, we focus our attention on environmental monitoring by taking advantage of photonic technologies. After reporting on some configurations useful for high precision agriculture, we explore the problems connected with soil water content measurement and landslide early warning. Then, we concentrate on a new generation of seismic sensors useful in both terrestrial and under water contests. Finally, we discuss a number of optical fiber sensors for use in radiation environments.

7.
J Gene Med ; 25(4): e3475, 2023 04.
Article in English | MEDLINE | ID: mdl-36670344

ABSTRACT

BACKGROUND: A dysregulation of cholesterol homeostasis is often seen in various cancer cell types, and elevated cholesterol content and that of its metabolites appears to be crucial for cancer progression and metastasis. Cholesterol is a precursor of various steroid hormones and a key plasma membrane component especially in lipid-rafts, also modulating many intracellular signaling pathways. METHODS: To provide an insight of dysregulated cholesterol regulatory genes, their transcript levels were analyzed in different cancers and their influence was correlated with the overall survival of cancer patients using cancer database analysis. RESULTS: This analysis found a set of genes (e.g., ACAT1, RXRA, SOAT1 and SQLE) that were not only often dysregulated, but also had been associated with poorer overall survival in most cancer types. Quantitative reverse transcriptase-polymerase chain reaction analysis revealed elevated SQLE and SOAT1 transcript levels and downregulated expression of RXRA and ACAT1 genes in triple negative breast cancer tissues compared to adjacent control tissues, indicating that this dysregulated expression of the gene signature is a diagnostic marker for breast cancer. CONCLUSION: For the first time, the present study identified a gene signature associated with the dysregulation of cholesterol homeostasis in cancer cells that may not only be used as a diagnostic marker, but also comprise a promising drug target for the advancement of cancer therapy.


Subject(s)
Breast Neoplasms , Cholesterol , Humans , Female , Cholesterol/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Lipid Metabolism , Genes, Regulator , Biomarkers/metabolism
8.
BMC Pregnancy Childbirth ; 22(1): 845, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36384496

ABSTRACT

BACKGROUND: Alterations in mitochondrial signatures such as mitochondrial DNA (mtDNA) content in maternal blood have been linked to pregnancy-related complications. However, changes in maternal mtDNA content, their distribution and associated signaling during normal pregnancies are not clear; which could suggest their physiological role in maternal adaptation to pregnancy related changes and a reference threshold. THE AIM OF THIS STUDY: to assess the distribution of mtDNA in peripheral blood and their association with circulatory ROS levels across different trimesters of healthy pregnancy. METHODS: In this pilot cross sectional study, blood samples of normal pregnant women from each trimester (total = 60) and age-matched non-pregnant (NP) women as control group (n = 20) were analyzed for a) the relative distribution of mtDNA content in cellular and cell free (plasma) fractions using relative quantitative polymerase chain reaction (qPCR) and b) the levels of circulating reactive oxygen species (ROS) by measurement of plasma H2O2. The results were compared between pregnant and NP groups and within trimesters for significant differences, and were also analyzed for their correlation between groups using statistical methods. RESULTS: While, we observed a significant decline in cellular mtDNA; plasma mtDNA was significant increased across all trimesters compared to NP. However, from comparisons within trimesters; only cellular mtDNA content in 3rd trimester was significantly reduced compared to 1st trimester, and plasma mtDNA did not differ significantly among different trimesters. A significantly higher level of plasma H2O2 was also observed during 3rd trimester compared to NP and to 1st trimester. Correlation analysis showed that, while cellular mtDNA content was negatively correlated to plasma mtDNA and to plasma H2O2 levels; plasma mtDNA was positively correlated with plasma H2O2 content. CONCLUSIONS: This study suggested that normal pregnancy is associated with an opposing trend of reduced cellular mtDNA with increased circulatory mtDNA and H2O2 levels, which may contribute to maternal adaptation, required during different stages of pregnancy. Estimation of mtDNA distribution and ROS level in maternal blood could show mitochondrial functionality during normal pregnancy, and could be exploited to identify their prognostic/ diagnostic potential in pregnancy complications.


Subject(s)
Cell-Free Nucleic Acids , Female , Humans , Pregnancy , Reactive Oxygen Species , Pilot Projects , Cross-Sectional Studies , Hydrogen Peroxide , DNA, Mitochondrial
9.
Curr Drug Targets ; 23(6): 606-627, 2022.
Article in English | MEDLINE | ID: mdl-34431462

ABSTRACT

Metabolic reprogramming is considered a major event in cancer initiation, progression and metastasis. The metabolic signature of cancer cells includes alterations in glycolysis, mitochondrial respiration, fatty acid/lipid and amino acid metabolism. Being at a junction of various metabolic pathways, mitochondria play a key role in fueling cancer growth through regulating bioenergetics, metabolism and cell death. Increasing evidence suggests that alteration in lipid metabolism is a common feature of metastatic progression, including fatty acid synthesis as well as fatty acid oxidation. However, the interplay between lipid metabolism and mitochondria in carcinogenesis remains obscure. The present review focuses on key lipid metabolic pathways associated with mitochondrial regulation that drive cancer phenotype and metastasis. We also review potential targets of lipid metabolism and mitochondria to improve the therapeutic regime in cancer patients. This review aims to improve our current understanding of the intricate relation of lipids with mitochondria and provides insights into new therapeutic approaches.


Subject(s)
Lipid Metabolism , Neoplasms , Energy Metabolism , Fatty Acids/metabolism , Fatty Acids/therapeutic use , Humans , Mitochondria/pathology , Neoplasms/drug therapy
10.
Nat Metab ; 3(9): 1175-1188, 2021 09.
Article in English | MEDLINE | ID: mdl-34545251

ABSTRACT

Visceral adipose tissue (VAT) encases mesenteric lymphatic vessels and lymph nodes through which lymph is transported from the intestine and mesentery. Whether mesenteric lymphatics contribute to adipose tissue inflammation and metabolism and insulin resistance is unclear. Here we show that obesity is associated with profound and progressive dysfunction of the mesenteric lymphatic system in mice and humans. We find that lymph from mice and humans consuming a high-fat diet (HFD) stimulates lymphatic vessel growth, leading to the formation of highly branched mesenteric lymphatic vessels that 'leak' HFD-lymph into VAT and, thereby, promote insulin resistance. Mesenteric lymphatic dysfunction is regulated by cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF)-C-VEGF receptor (R)3 signalling. Lymph-targeted inhibition of COX-2 using a glyceride prodrug approach reverses mesenteric lymphatic dysfunction, visceral obesity and inflammation and restores glycaemic control in mice. Targeting obesity-associated mesenteric lymphatic dysfunction thus represents a potential therapeutic option to treat metabolic disease.


Subject(s)
Insulin Resistance , Lymphatic Vessels/physiopathology , Mesentery/physiopathology , Obesity, Abdominal/physiopathology , Adult , Aged , Animals , Cyclooxygenase 2/metabolism , Female , Humans , Intra-Abdominal Fat/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Obesity, Abdominal/therapy , Rats , Rats, Sprague-Dawley , Signal Transduction , Vascular Endothelial Growth Factor C/metabolism
11.
Biosens Bioelectron ; 172: 112747, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33129073

ABSTRACT

In this work, the development and testing of a novel fiber-optic based label-free biosensor is presented, whose performance were verified through the detection of C-reactive protein (CRP) in serum. The device is based on a long period grating fabricated in a double cladding fiber with a W-shaped refractive index (RI) profile. As a result, the working point of the device was tuned to the mode transition region by chemical etching of the outer fiber cladding, obtaining a significant enhancement of the RI sensitivity and an excellent visibility of the grating resonances due to the mode transition in an all-silica structure. The fiber transducer was coated with a nanometric thin layer of graphene oxide in order to provide functional groups for the covalent immobilization of the biological recognition element. A very low limit of detection of about 0.15 ng/mL was obtained during the detection of CRP in serum, and a large working range (1 ng/mL - 100 µg/mL) of clinical relevance has been also achieved.


Subject(s)
Biosensing Techniques , Graphite , Fiber Optic Technology , Refractometry
12.
Sensors (Basel) ; 20(15)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722264

ABSTRACT

In this work, we present a new setup for real-time investigations of optical fibers and optical fiber sensors while being subjected to gamma-rays. The investigation of the radiation effects on novel or well-assessed sensing devices has attracted a lot of interest, however, the facilities required to do this (when available) are barely accessible to the device to be characterized. In order to reduce the limitations of these types of experiments and ensure a highly controlled environment, we implemented a configuration that permits the on-line testing of optical components inside a Co-60 gamma chamber research irradiator. To show the advantages of this new approach, we present a case study that compares an arc-induced optical fiber long period grating (LPG) irradiated in a gamma chamber with the same type of grating irradiated with gamma-rays from a Co-60 industrial irradiator. In order to better understand the effects of radiation on such components and their behavior in radiation environments, we focus on the homogeneity of the radiation field and parameter customizability as well as the high reproducibility of the experiments.

13.
Sensors (Basel) ; 20(9)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403275

ABSTRACT

Over the last years, fiber optic sensors have been increasingly applied for applications in environments with a high level of radiation as an alternative to electrical sensors, due to their: high immunity, high multiplexing and long-distance monitoring capability. In order to assess the feasibility of their use, investigations on optical materials and fiber optic sensors have been focusing on their response depending on radiation type, absorbed dose, dose rate, temperature and so on. In this context, this paper presents a comprehensive review of the results achieved over the last twenty years concerning the irradiation of in-fiber Long Period Gratings (LPGs). The topic is approached from the point of view of the optical engineers engaged in the design, development and testing of these devices, by focusing the attention on the fiber type, grating fabrication technique and properties, irradiation parameters and performed analysis. The aim is to provide a detailed review concerning the state of the art and to outline the future research trends.

14.
Methods Mol Biol ; 2104: 419-445, 2020.
Article in English | MEDLINE | ID: mdl-31953829

ABSTRACT

Rapid advancements in metabolomics technologies have allowed for application of liquid chromatography mass spectrometry (LCMS)-based metabolomics to investigate a wide range of biological questions. In addition to an important role in studies of cellular biochemistry and biomarker discovery, an exciting application of metabolomics is the elucidation of mechanisms of drug action (Creek et al., Antimicrob Agents Chemother 60:6650-6663, 2016; Allman et al., Antimicrob Agents Chemother 60:6635-6649, 2016). Although it is a very useful technique, challenges in raw data processing, extracting useful information out of large noisy datasets, and identifying metabolites with confidence, have meant that metabolomics is still perceived as a highly specialized technology. As a result, metabolomics has not yet achieved the anticipated extent of uptake in laboratories around the world as genomics or transcriptomics. With a view to bring metabolomics within reach of a nonspecialist scientist, here we describe a routine workflow with IDEOM, which is a graphical user interface within Microsoft Excel, which almost all researchers are familiar with. IDEOM consists of custom built algorithms that allow LCMS data processing, automatic noise filtering and identification of metabolite features (Creek et al., Bioinformatics 28:1048-1049, 2012). Its automated interface incorporates advanced LCMS data processing tools, mzMatch and XCMS, and requires R for complete functionality. IDEOM is freely available for all researchers and this chapter will focus on describing the IDEOM workflow for the nonspecialist researcher in the context of studies designed to elucidate mechanisms of drug action.


Subject(s)
Chromatography, Liquid , Computational Biology/methods , Mass Spectrometry , Metabolomics , Pharmacology , Software , Workflow , Chromatography, Liquid/statistics & numerical data , Data Analysis , Mass Spectrometry/statistics & numerical data , Metabolic Networks and Pathways , Metabolomics/statistics & numerical data , Pharmacology/statistics & numerical data
16.
Proteomics ; 19(10): e1700448, 2019 05.
Article in English | MEDLINE | ID: mdl-30353665

ABSTRACT

Early detection and diagnosis of cancer can allow timely medical intervention, which greatly improves chances of survival and enhances quality of life. Biomarkers play an important role in assisting clinicians and health care providers in cancer diagnosis and treatment follow-up. In spite of years of research and the discovery of thousands of candidate cancer biomarkers, only a few have transitioned to routine usage in the clinic. This review highlights advances in proteomics technologies that have enabled high rates of discovery of candidate cancer biomarkers and evaluates integration with other omics technologies to improve their progress through to validation and clinical translation. Furthermore, it gauges the role of metabolomics technology in cancer biomarker research and assesses it as a complementary tool in aiding cancer biomarker discovery and validation.


Subject(s)
Biomarkers, Tumor/analysis , Early Detection of Cancer/methods , Metabolomics , Neoplasms/diagnosis , Proteomics , Genomics , Humans , Mass Spectrometry , Translational Research, Biomedical
17.
Nature ; 549(7670): 23-25, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28880300
18.
J Infect Dis ; 215(9): 1435-1444, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28368494

ABSTRACT

Background: The emergence of artemisinin resistance in the malaria parasite Plasmodium falciparum poses a major threat to the control and elimination of malaria. Certain point mutations in the propeller domain of PfKelch13 are associated with resistance, but PfKelch13 mutations do not always result in clinical resistance. The underlying mechanisms associated with artemisinin resistance are poorly understood, and the impact of PfKelch13 mutations on cellular biochemistry is not defined. Methods: This study aimed to identify global biochemical differences between PfKelch13-mutant artemisinin-resistant and -sensitive strains of P. falciparum by combining liquid chromatography-mass spectrometry (LC-MS)-based proteomics, peptidomics, and metabolomics. Results: Proteomics analysis found both PfKelch13 mutations examined to be specifically associated with decreased abundance of PfKelch13 protein. Metabolomics analysis demonstrated accumulation of glutathione and its precursor, gamma-glutamylcysteine, and significant depletion of 1 other putative metabolite in resistant strains. Peptidomics analysis revealed lower abundance of several endogenous peptides derived from hemoglobin (HBα and HBß) in the artemisinin-resistant strains. Conclusion: PfKelch13 mutations associated with artemisinin resistance lead to decreased abundance of PfKelch13 protein, decreased hemoglobin digestion, and enhanced glutathione production.


Subject(s)
Artemisinins/pharmacology , Drug Resistance/genetics , Metabolomics/methods , Plasmodium falciparum , Proteomics/methods , Protozoan Proteins , Humans , Malaria, Falciparum/parasitology , Models, Biological , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/analysis , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
19.
Elife ; 62017 03 02.
Article in English | MEDLINE | ID: mdl-28252383

ABSTRACT

Plasmodium falciparum parasites, the causative agents of malaria, modify their host erythrocyte to render them permeable to supplementary nutrient uptake from the plasma and for removal of toxic waste. Here we investigate the contribution of the rhoptry protein RhopH2, in the formation of new permeability pathways (NPPs) in Plasmodium-infected erythrocytes. We show RhopH2 interacts with RhopH1, RhopH3, the erythrocyte cytoskeleton and exported proteins involved in host cell remodeling. Knockdown of RhopH2 expression in cycle one leads to a depletion of essential vitamins and cofactors and decreased de novo synthesis of pyrimidines in cycle two. There is also a significant impact on parasite growth, replication and transition into cycle three. The uptake of solutes that use NPPs to enter erythrocytes is also reduced upon RhopH2 knockdown. These findings provide direct genetic support for the contribution of the RhopH complex in NPP activity and highlight the importance of NPPs to parasite survival.


Subject(s)
Erythrocytes/parasitology , Host-Pathogen Interactions , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Animals , Cytoskeleton/metabolism , Humans , Mice , Pyrimidines/metabolism , Vitamins/metabolism
20.
J Proteome Res ; 16(4): 1492-1505, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28166632

ABSTRACT

A detailed analysis of the metabolic state of human-stem-cell-derived erythrocytes allowed us to characterize the existence of active metabolic pathways in younger reticulocytes and compare them to mature erythrocytes. Using high-resolution LC-MS-based untargeted metabolomics, we found that reticulocytes had a comparatively much richer repertoire of metabolites, which spanned a range of metabolite classes. An untargeted metabolomics analysis using stable-isotope-labeled glucose showed that only glycolysis and the pentose phosphate pathway actively contributed to the biosynthesis of metabolites in erythrocytes, and these pathways were upregulated in reticulocytes. Most metabolite species found to be enriched in reticulocytes were residual pools of metabolites produced by earlier erythropoietic processes, and their systematic depletion in mature erythrocytes aligns with the simplification process, which is also seen at the cellular and the structural level. Our work shows that high-resolution LC-MS-based untargeted metabolomics provides a global coverage of the biochemical species that are present in erythrocytes. However, the incorporation of stable isotope labeling provides a more accurate description of the active metabolic processes that occur in each developmental stage. To our knowledge, this is the first detailed characterization of the active metabolic pathways of the erythroid lineage, and it provides a rich database for understanding the physiology of the maturation of reticulocytes into mature erythrocytes.


Subject(s)
Erythrocytes/metabolism , Metabolomics , Reticulocytes/metabolism , Cell Differentiation/genetics , Chromatography, Liquid , Databases, Factual , Erythrocytes/cytology , Glucose/metabolism , Humans , Isotope Labeling , Lipid Metabolism/genetics , Mass Spectrometry , Metabolic Networks and Pathways/genetics , Reticulocytes/cytology , Signal Transduction , Stem Cells/cytology , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...