Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
3.
Neuromolecular Med ; 25(3): 426-440, 2023 09.
Article in English | MEDLINE | ID: mdl-37460789

ABSTRACT

Exposure to cadmium, a heavy metal distributed in the environment is a cause of concern due to associated health effects in population around the world. Continuing with the leads demonstrating alterations in brain cholinergic signalling in cadmium induced cognitive deficits by us; the study is focussed to understand involvement of N-Methyl-D-aspartate receptor (NMDA-R) and its postsynaptic signalling and Nrf2-ARE pathways in hippocampus. Also, the protective potential of quercetin, a polyphenolic bioflavonoid, was assessed in cadmium induced alterations. Cadmium treatment (5 mg/kg, body weight, p.o., 28 days) decreased mRNA expression and protein levels of NMDA receptor subunits (NR1, NR2A) in rat hippocampus, compared to controls. Cadmium treated rats also exhibited decrease in levels of NMDA-R associated downstream signalling proteins (CaMKIIα, PSD-95, TrkB, BDNF, PI3K, AKT, Erk1/2, GSK3ß, and CREB) and increase in levels of SynGap in hippocampus. Further, decrease in protein levels of Nrf2 and HO1 associated with increase in levels of Keap1 exhibits alterations in Nrf2/ARE signalling in hippocampus of cadmium treated rats. Degeneration of pyramidal neurons in hippocampus was also evident on cadmium treatment. Simultaneous treatment with quercetin (25 mg/kg body weight p.o., 28 days) was found to attenuate cadmium induced changes in hippocampus. The results provide novel evidence that cadmium exposure may disrupt integrity of NMDA receptors and its downstream signaling targets by affecting the Nrf2/ARE signaling pathway in hippocampus and these could contribute in cognitive deficits. It is further interesting that quercetin has the potential to protect cadmium induced changes by modulating Nrf2/ARE signaling which was effective to control NMDA-R and PI3K/AKT cell signaling pathways.


Subject(s)
Proto-Oncogene Proteins c-akt , Quercetin , Rats , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , N-Methylaspartate/metabolism , Cadmium/toxicity , Cadmium/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction , Receptors, N-Methyl-D-Aspartate/genetics , Hippocampus , Cognition
4.
Neurotoxicology ; 96: 101-117, 2023 05.
Article in English | MEDLINE | ID: mdl-37060950

ABSTRACT

The risk to develop neurobehavioural abnormalities in humans on exposure to lambda-cyhalothrin (LCT) - a type II synthetic pyrethroid has enhanced significantly due to its extensive uses in agriculture, homes, veterinary practices and public health programs. Earlier, we found that the brain dopaminergic system is vulnerable to LCT and affects motor functions in rats. In continuation to this, the present study is focused to unravel the role of neuroinflammation in LCT-induced neurotoxicity in substantia nigra and corpus striatum in rats. Increase in the mRNA expression of proinflammatory cytokines (TNF- α, IL-1ß, IL-6) and iNOS whereas decrease in anti-inflammatory cytokine (IL-10) was distinct both in substantia nigra and corpus striatum of rats treated with LCT (0.5, 1.0, 3.0 mg/kg body weight, p.o, for 45 days) as compared to control rats. Further, LCT-treated rats exhibited increased levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba-1), the glial marker proteins both in substantia nigra and corpus striatum as compared to controls. Exposure of rats to LCT also caused alterations in the levels of heat shock protein 60 (HSP60) and mRNA expression of toll-like receptors (TLR2 and TLR4) in the substantia nigra and corpus striatum. An increase in the phosphorylation of key proteins involved in NF-kß (P65, Iκß, IKKα, IKKß) and JAK/STAT (STAT1, STAT3) signaling and alteration in the protein levels of JAK1 and JAK2 was prominent in LCT-treated rats. Histological studies revealed damage of dopaminergic neurons and reactive gliosis as evidenced by the presence of darkly stained pyknotic neurons and decrease in Nissl substance and an increase in infiltration of immune cells both in substantia nigra and corpus striatum of LCT-treated rats. Presence of reactive microglia and astrocytes in LCT-treated rats was also distinct in ultrastructural studies. The results exhibit that LCT may damage dopaminergic neurons in the substantia nigra and corpus striatum by inducing inflammation as a result of stimulation of neuroglial cells involving activation of NF-κß and JAK/STAT signaling.


Subject(s)
Pyrethrins , Humans , Rats , Animals , Pyrethrins/metabolism , Substantia Nigra/metabolism , Dopaminergic Neurons/metabolism , Cytokines/genetics , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism , Inflammation/metabolism , RNA, Messenger/metabolism , Corpus Striatum/metabolism
5.
Front Microbiol ; 9: 2864, 2018.
Article in English | MEDLINE | ID: mdl-30532748

ABSTRACT

Nosocomial infections caused by antibiotic-resistant Gram-negative pathogens are of grave concern today. Polymyxins are considered as the last resorts of therapy to treat these multi-drug resistant (MDR) bacteria. But their associated nephrotoxicity and neurotoxicity calls for the development of safer polymyxin therapy until novel and less toxic antibiotics are discovered. No other polymyxin molecule except polymyxin B and E (colistin) is explored thoroughly in literature to demonstrate its clinical relevance. In the present study, we have isolated two antimicrobial compounds named P1 and P2 from the soil isolate Paenibacillus dendritiformis strain PV3-16, which we later identified as polymyxin A2 and A1 respectively. We tested their minimum inhibitory concentrations (MICs) against MDR clinical isolates, performed membrane permeabilization assays and determined their interaction with lipopolysaccharide (LPS). Finally, we studied their toxicity against human Leukemic monocyte cell line (THP-1) and embryonic kidney cell line (HEK 293). Both compounds displayed equal efficacy when compared with standard polymyxins. P1 was 2-4 fold more active in most of the clinical strains tested. Moreover, P1 showed higher affinity toward LPS. In cytotoxicity studies, P1 had IC50 value (>1000 µg/ml) similar to colistin against HEK cells but immune cells, i.e., THP-1 cell lines were more sensitive to polymyxins. P1 showed less toxicity in THP-1 cell line than all other polymyxins checked. To sum up, P1 (polymyxin A2) possessed better efficacy than polymyxin B and E and had least toxicity to immune cells. Since polymyxin A was not investigated thoroughly, we performed the comprehensive in vitro assessment of this molecule. Moreover, this is the first report of isolation and characterization of polymyxin A from P. dendritiformis. This compound should be further investigated for its in vivo efficacy and toxicity to develop it as a drug candidate.

SELECTION OF CITATIONS
SEARCH DETAIL
...