Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Direct ; 3(11): e00177, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31788657

ABSTRACT

MYC2 is a basic helix-loop-helix transcription factor that acts as a repressor of blue light-mediated photomorphogenic growth; however, it promotes lateral root formation. MYC2 also regulates different phytohormone-signaling pathways in crucial manner. Arabidopsis response regulator 16 (ARR16) is a negative regulator of cytokinin signaling pathways. Here, we show that MYC2 directly binds to the E-box of ARR16 minimal promoter and negatively regulates its expression in a cytokinin-dependent manner. While ARR16 and MYC2 influence jasmonic acid and cytokinin signaling, the expression of ARR16 is regulated by cry1, GBF1, and HYH, the components of light signaling pathways. The transgenic studies show that the expression of ARR16 is regulated by MYC2 at various stages of development. The mutational studies reveal that ARR16 positively regulates the hypocotyl growth in blue light, and phenotypic analysis of atmyc2 arr16 double mutant further reveals that arr16 can suppress the short hypocotyl phenotype of atmyc2. Altogether, this work highlights MYC2-mediated transcriptional repression of ARR16 in Arabidopsis seedling development.

2.
Mol Plant Microbe Interact ; 32(10): 1429-1447, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31184524

ABSTRACT

Concomitant increase of auxin-responsive factors ARF16 and ARF17, along with enhanced expression of ARF10 in resistant Sinapis alba compared with that in susceptible Brassica juncea upon challenge with Alternaria brassicicola, revealed that abscisic acid (ABA)-auxin crosstalk is a critical factor for resistance response. Here, we induced the ABA response through conditional expression of ARF10 in B. juncea using the A. brassicicola-inducible GH3.3 promoter. Induced ABA sensitivity caused by conditional expression of ARF10 in transgenic B. juncea resulted in tolerance against A. brassicicola and led to enhanced expression of several ABA-responsive genes without affecting the auxin biosynthetic gene expression. Compared with ABI3 and ABI4, ABI5 showed maximum upregulation in the most tolerant transgenic lines upon pathogen challenge. Moreover, elevated expression of ARF10 by different means revealed a direct correlation between ARF10 expression and the induction of ABI5 protein in B. juncea. Through in vitro DNA-protein experiments and chromosome immunoprecipitation using the ARF10 antibody, we demonstrated that ARF10 interacts with the auxin-responsive elements of the ABI5 promoter. This suggests that ARF10 may function as a modulator of ABI5 to induce ABA sensitivity and mediate the resistance response against A. brassicicola.


Subject(s)
Abscisic Acid , Alternaria , Arabidopsis Proteins , Gene Expression Regulation, Plant , Mustard Plant , Transcription Factors , Alternaria/physiology , Indoleacetic Acids/metabolism , Mustard Plant/genetics , Mustard Plant/microbiology , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...