Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Clin Biochem ; 20(2): 162-5, 2005 Jul.
Article in English | MEDLINE | ID: mdl-23105552

ABSTRACT

Reactive oxygen species and other free radicals are known to be the mediators of phenotypic and genotypic changes that lead from mutation to neoplasia. There are some primary antioxidants such as glutathione peroxidase (GPx), glutathione S-transferases (GSTs) and reduced glutathione, which protect against callular and molecular damage caused by the reactive oxygen metabolites (ROMs). The present study was conducted to determine the level of malondialdehyde (MDA), as an index of lipid peroxidation, along with the GPx, GSTs activities and level of reduced glutathione in 45 prostate cancer (PC) patients, 55 benign prostate hyperplasia (BPH) patients as compared to the controls. Significant higher levels of MDA and GSTs activities in the serum, (P<0.005) and significant lower levels of reduced GSH concentration and GPx activity in blood haemolysates (P<0.05) of PC and BPH patients were observed as compared to the controls. The relatively higher GSTs activity and low level of reduced GSH may be due to the response of increased reactive oxygen metabolites production in the blood. The higher MDA and lower GPx activities may be inadequate to detoxify high levels of H(2)O(2) into H(2)O leading to the formation of the(*)OH radical followed by MDA. This result hypothesizes that oxidant-antioxidant imbalance may be one of the major factor responsible for the development of prostate cancer and benign prostate hyperplasia.

2.
Indian J Cancer ; 41(3): 115-9, 2004.
Article in English | MEDLINE | ID: mdl-15472409

ABSTRACT

BACKGROUND: Glutathione-S-transferases (GSTs) are active in the detoxification of wide variety of endogenous or exogenous carcinogens. The genetic polymorphisms of GSTM1 and GSTT1 genes have been studied earlier to evaluate the relative risk of various cancers. AIM, SETTING AND DESIGN: In the present study, we examined the association of the GSTM1 and GSTT1 gene polymorphisms with sporadic prostate cancer patients in north Indian population. MATERIAL AND METHODS: This case control study was undertaken over a period of 24 months and included 103 prostate cancer patients and 117 controls; both patients and controls originated from northern part of India. The GSTT1 and GSTM1 genotypes were identified by multiplex PCR in peripheral blood DNA samples. STATISTICAL ANALYSIS: Difference in genotype prevalence and association between case and control group were assessed by the Chi square and Fisher Exact tests. RESULTS: Frequencies of null genotypes in GSTT1 and GSTM1, was 11% (13/117) and 30% (35/117) respectively in control individuals. The frequencies of GSTT1 and GSTM1 null genotypes in prostate cancer patients were 34% (35/103) and 53% (55/103) respectively. CONCLUSION: Our study demonstrates that the null genotypes of GSTT1 and GSTM1 are substantially at higher risk for prostate carcinoma as compared to the normal healthy controls. The GSTT1 and GSTM1 null genotypes did not show significant association with tobacco usage in prostate cancer patients. However, the null genotypes were significantly stratified in 50-60 year-old patients when incidence of prostate cancer is high.


Subject(s)
Glutathione Transferase/genetics , Polymorphism, Genetic/genetics , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , Aged , Case-Control Studies , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , India , Male , Middle Aged , Neoplasm Staging , Prevalence , Prostatic Neoplasms/pathology , Risk Factors , Smoking
SELECTION OF CITATIONS
SEARCH DETAIL
...