Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499173

ABSTRACT

Plant pathogens challenge our efforts to maximize crop production due to their ability to rapidly develop resistance to pesticides. Fungal biocontrol agents have become an important alternative to chemical fungicides, due to environmental concerns related to the latter. Here we review the complex modes of action of biocontrol agents in general and epiphytic yeasts belonging to the genus Pseudozyma specifically and P. aphidis in particular. Biocontrol agents act through multiple direct and indirect mechanisms, which are mainly based on their secretions. We discuss the direct modes of action, such as antibiosis, reactive oxygen species-producing, and cell wall-degrading enzyme secretions which can also play a role in mycoparasitism. In addition, we discuss indirect modes of action, such as hyperbiotrophy, induced resistance and growth promotion based on the secretion of effectors and elicitors from the biocontrol agent. Due to their unique characteristics, epiphytic yeasts hold great potential for use as biocontrol agents, which may be more environmentally friendly than conventional pesticides and provide a way to reduce our dependency on fungicides based on increasingly expensive fossil fuels. No less important, the complex mode of action of Pseudozyma-based biocontrol agents can also reduce the frequency of resistance developed by pathogens to these agents.

2.
Microorganisms ; 8(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674341

ABSTRACT

The necrotrophic fungus Botrytis cinerea, is considered a major cause of postharvest losses in a wide range of crops. The common fungal extracellular membrane protein (CFEM), containing a conserved eight-cysteine pattern, was found exclusively in fungi. Previous studies in phytopathogenic fungi have demonstrated the role of membrane-bound and secreted CFEM-containing proteins in different aspects of fungal virulence. However, non-G protein-coupled receptor (non-GPCR) membrane CFEM proteins have not been studied yet in phytopathogenic fungi. In the present study, we have identified a non-GPCR membrane-bound CFEM-containing protein, Bcin07g03260, in the B. cinerea genome, and generated deletion mutants, ΔCFEM-Bcin07g03260, to study its potential role in physiology and virulence. Three independent ΔCFEM-Bcin07g03260 mutants showed significantly reduced progression of a necrotic lesion on tomato (Solanum lycopersicum) leaves. Further analysis of the mutants revealed significant reduction (approximately 20-30%) in conidial germination and consequent germ tube elongation compared with the WT. Our data complements a previous study of secreted ΔCFEM1 mutants of B. cinerea that showed reduced progression of necrotic lesions on leaves, without effect on germination. Considering various functions identified for CFEM proteins in fungal virulence, our work illustrates a potential new role for a non-GPCR membrane CFEM in pathogenic fungi to control virulence in the fungus B. cinerea.

3.
Mol Plant Microbe Interact ; 33(9): 1103-1107, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32552519

ABSTRACT

Botrytis cinerea is a foliar necrotrophic fungal-pathogen capable of infecting >580 genera of plants, is often used as model organism for studying fungal-host interactions. We used RNAseq to study transcriptome of B. cinerea infection on a major (worldwide) vegetable crop, tomato (Solanum lycopersicum). Most previous works explored only few infection stages, using RNA extracted from entire leaf-organ diluting the expression of studied infected region. Many studied B. cinerea infection, on detached organs assuming that similar defense/physiological reactions occurs in the intact plant. We analyzed transcriptome of the pathogen and host in 5 infection stages of whole-plant leaves at the infection site. We supply high quality, pathogen-enriched gene count that facilitates future research of the molecular processes regulating the infection process.


Subject(s)
Botrytis/genetics , Plant Diseases/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Humans
4.
Arch Virol ; 163(7): 1863-1875, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29582165

ABSTRACT

In September 2014, a new tobamovirus was discovered in Israel that was able to break Tm-2-mediated resistance in tomato that had lasted 55 years. The virus was isolated, and sequencing of its genome showed it to be tomato brown rugose fruit virus (ToBRFV), a new tobamovirus recently identified in Jordan. Previous studies on mutant viruses that cause resistance breaking, including Tm-2-mediated resistance, demonstrated that this phenotype had resulted from only a few mutations. Identification of important residues in resistance breakers is hindered by significant background variation, with 9-15% variability in the genomic sequences of known isolates. To understand the evolutionary path leading to the emergence of this resistance breaker, we performed a comprehensive phylogenetic analysis and genomic comparison of different tobamoviruses, followed by molecular modeling of the viral helicase. The phylogenetic location of the resistance-breaking genes was found to be among host-shifting clades, and this, together with the observation of a relatively low mutation rate, suggests that a host shift contributed to the emergence of this new virus. Our comparative genomic analysis identified twelve potential resistance-breaking mutations in the viral movement protein (MP), the primary target of the related Tm-2 resistance, and nine in its replicase. Finally, molecular modeling of the helicase enabled the identification of three additional potential resistance-breaking mutations.


Subject(s)
Evolution, Molecular , Genomics/methods , Mutation , Tobamovirus/genetics , Viral Proteins/genetics , Solanum lycopersicum/virology , Models, Molecular , Mutation Rate , Phylogeny , Plant Diseases/virology , RNA, Viral/genetics , Tobamovirus/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...