Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(10): e20852, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37916109

ABSTRACT

The analytical soliton solutions place a lot of value on birefringent fibres. The major goal of this study is to generate novel forms of soliton solutions for the Radhakrishnan-Kundu-Lakshmanan equation, which depicts unstable optical solitons that arise from optical propagations using birefringent fibres. The (presumably new) extended direct algebraic (EDA) technique is used here to extract a large number of solutions for RKLE. It gives soliton solutions up to thirty-seven, which essentially correspond to all soliton families. This method's ability to determine many sorts of solutions through a single process is one of its key advantages. Additionally, it is simple to infer that the technique employed in this study is really straightforward yet one of the quite effective approaches to solving nonlinear partial differential equations so, this novel extended direct algebraic (EDA) technique may be regarded as a comprehensive procedure. The resulting solutions are found to be hyperbolic, periodic, trigonometric, bright and dark, combined bright-dark, and W-shaped soliton, and these solutions are visually represented by means of 2D, 3D, and density plots. The present study can be extended to investigate several other nonlinear systems to understand the physical insights of the optical propagations through birefringent fibre.

3.
Math Biosci Eng ; 19(5): 5120-5133, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35430856

ABSTRACT

This work deals with the construction and analysis of convexity and nabla positivity for discrete fractional models that includes singular (exponential) kernel. The discrete fractional differences are considered in the sense of Riemann and Liouville, and the υ1-monotonicity formula is employed as our initial result to obtain the mixed order and composite results. The nabla positivity is discussed in detail for increasing discrete operators. Moreover, two examples with the specific values of the orders and starting points are considered to demonstrate the applicability and accuracy of our main results.

4.
Math Biosci Eng ; 19(1): 812-835, 2022 01.
Article in English | MEDLINE | ID: mdl-34903014

ABSTRACT

In this paper, firstly we define the concept of h-preinvex fuzzy-interval-valued functions (h-preinvex FIVF). Secondly, some new Hermite-Hadamard type inequalities (H-H type inequalities) for h-preinvex FIVFs via fuzzy integrals are established by means of fuzzy order relation. Finally, we obtain Hermite-Hadamard Fejér type inequalities (H-H Fejér type inequalities) for h-preinvex FIVFs by using above relationship. To strengthen our result, we provide some examples to illustrate the validation of our results, and several new and previously known results are obtained.


Subject(s)
Fuzzy Logic , Models, Theoretical , Algorithms
5.
Math Biosci Eng ; 19(12): 14116-14141, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36654083

ABSTRACT

An analysis of steady two-dimensional boundary layer MHD (magnetohydrodynamic) nanofluid flow with nonlinear thermal radiation across a horizontally moving thin needle was performed in this study. The flow along a thin needle is considered to be laminar and viscous. The Rosseland estimate is utilized to portray the radiation heat transition under the energy condition. Titanium dioxide (TiO$ _2 $) is applied as the nanofluid and water as the base fluid. The objective of this work was to study the effects of a magnetic field, thermal radiation, variable viscosity and thermal conductivity on MHD flow toward a porous thin needle. By using a suitable similarity transformation, the nonlinear governing PDEs are turned into a set of nonlinear ODEs which are then successfully solved by means of the homotopy analysis method using Mathematica software. The comparison result for some limited cases was achieved with earlier published data. The governing parameters were fixed values throughout the study, i.e., $ k_1 $ = 0.3, $ M $ = 0.6, $ F_r $ = 0.1, $ \delta_\mu $ = 0.3, $ \chi $ = 0.001, $ Pr $ = 0.7, $ Ec $ = 0.5, $ \theta_r $ = 0.1, $ \epsilon $ = 0.2, $ Rd $ = 0.4 and $ \delta_k $ = 0.1. After detailed analysis of the present work, it was discovered that the nanofluid flow diminishes with growth in the porosity parameter, variable viscosity parameter and magnetic parameter, while it upsurges when the rate of inertia increases. The thermal property enhances with the thermal conductivity parameter, radiation parameter, temperature ratio parameter and Eckert number, while it reduces with the Prandtl number and size of the needle. Moreover, skin friction of the nanofluid increases with corresponding growth in the magnetic parameter, porosity parameter and inertial parameter, while it reduces with growth in the velocity ratio parameter. The Nusselt number increases with increases in the values of the inertia parameter and Eckert number, while it decliens against a higher estimation of the Prandtl number and magnetic parameter. This study has a multiplicity of applications like petroleum products, nuclear waste disposal, magnetic cell separation, extrusion of a plastic sheet, cross-breed powered machines, grain storage, materials production, polymeric sheet, energy generation, drilling processes, continuous casting, submarines, wire coating, building design, geothermal power generations, lubrication, space equipment, biomedicine and cancer treatment.


Subject(s)
Hydrodynamics , Models, Theoretical , Hot Temperature , Temperature , Magnetic Fields
SELECTION OF CITATIONS
SEARCH DETAIL
...