Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Bioresour Technol ; 362: 127814, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36031123

ABSTRACT

Biogas production through anaerobic digestions of organic wastes using microbes is a potential alternative to maintain the long term sustainability of the environment and also to full-fill the energy demands and waste management issues. In this context, pressmud can be a vital substrate which is generated from sugarcane industries and found to be broadly available. In this work, biogas improvement has been investigated in presence of CuO/Cu2O based nanocatalyst wherein pressmud is employed as a substrate in anaerobic digestion. Herein, CuO/Cu2O based nanocatalyst has been prepared using the aqueous extract prepared from the combination of PM and SCB which is employed as a reducing agent. The physicochemical properties of CuO/Cu2O nanocatalyst have been probed through different techniques and it is noticed that using 1.0 % CuO/Cu2O based nanocatalyst employed in AD process, cumulative biogas 224.7 mL CH4 /g VS could be recorded after 42 days.


Subject(s)
Biofuels , Saccharum , Anaerobiosis , Bioreactors , Cellulose , Copper , Digestion , Edible Grain/chemistry , Methane/analysis , Saccharum/chemistry
2.
Int J Mol Sci ; 20(20)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618903

ABSTRACT

Biofilms are the cause of major bacteriological infections in patients. The complex architecture of Escherichia coli (E. coli) biofilm attached to the surface of catheters has been studied and found to depend on the biomaterial's surface properties. The SEM micrographs and water contact angle analysis have revealed that the nature of the surface affects the growth and extent of E. coli biofilm formation. In vitro studies have revealed that the Gram-negative E. coli adherence to implanted biomaterials takes place in accordance with hydrophobicity, i.e., latex > silicone > polyurethane > stainless steel. Permanent removal of E. coli biofilm requires 50 to 200 times more gentamicin sulfate (G-S) than the minimum inhibitory concentration (MIC) to remove 90% of E. coli biofilm (MBIC90). Here, in vitro eradication of biofilm-associated infection on biomaterials has been done by Eudragit RL100 encapsulated gentamicin sulfate (E-G-S) nanoparticle of range 140 nm. It is 10-20 times more effective against E. coli biofilm-associated infections eradication than normal unentrapped G-S. Thus, Eudragit RL100 mediated drug delivery system provides a promising way to reduce the cost of treatment with a higher drug therapeutic index.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biocompatible Materials , Biofilms/drug effects , Catheters/microbiology , Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Drug Liberation , Escherichia coli/drug effects , Escherichia coli/physiology , Humans , Microbial Sensitivity Tests , Nanoparticles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...