Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(3): e0264785, 2022.
Article in English | MEDLINE | ID: mdl-35298502

ABSTRACT

The variability of clinical course and prognosis of COVID-19 highlights the necessity of patient sub-group risk stratification based on clinical data. In this study, clinical data from a cohort of Indian COVID-19 hospitalized patients is used to develop risk stratification and mortality prediction models. We analyzed a set of 70 clinical parameters including physiological and hematological for developing machine learning models to identify biomarkers. We also compared the Indian and Wuhan cohort, and analyzed the role of steroids. A bootstrap averaged ensemble of Bayesian networks was also learned to construct an explainable model for discovering actionable influences on mortality and days to outcome. We discovered blood parameters, diabetes, co-morbidity and SpO2 levels as important risk stratification features, whereas mortality prediction is dependent only on blood parameters. XGboost and logistic regression model yielded the best performance on risk stratification and mortality prediction, respectively (AUC score 0.83, AUC score 0.92). Blood coagulation parameters (ferritin, D-Dimer and INR), immune and inflammation parameters IL6, LDH and Neutrophil (%) are common features for both risk and mortality prediction. Compared with Wuhan patients, Indian patients with extreme blood parameters indicated higher survival rate. Analyses of medications suggest that a higher proportion of survivors and mild patients who were administered steroids had extreme neutrophil and lymphocyte percentages. The ensemble averaged Bayesian network structure revealed serum ferritin to be the most important predictor for mortality and Vitamin D to influence severity independent of days to outcome. The findings are important for effective triage during strains on healthcare infrastructure.


Subject(s)
COVID-19/mortality , Hospitalization/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Bayes Theorem , COVID-19/epidemiology , COVID-19/etiology , Child , China/epidemiology , Female , Humans , India/epidemiology , Machine Learning , Male , Middle Aged , Models, Statistical , Risk Assessment/methods , Risk Factors , Young Adult
2.
Pathogens ; 10(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34578142

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manifests a broad spectrum of clinical presentations, varying in severity from asymptomatic to mortality. As the viral infection spread, it evolved and developed into many variants of concern. Understanding the impact of mutations in the SARS-CoV-2 genome on the clinical phenotype and associated co-morbidities is important for treatment and preventionas the pandemic progresses. Based on the mild, moderate, and severe clinical phenotypes, we analyzed the possible association between both, the clinical sub-phenotypes and genomic mutations with respect to the severity and outcome of the patients. We found a significant association between the requirement of respiratory support and co-morbidities. We also identified six SARS-CoV-2 genome mutations that were significantly correlated with severity and mortality in our cohort. We examined structural alterations at the RNA and protein levels as a result of three of these mutations: A26194T, T28854T, and C25611A, present in the Orf3a and N protein. The RNA secondary structure change due to the above mutations can be one of the modulators of the disease outcome. Our findings highlight the importance of integrative analysis in which clinical and genetic components of the disease are co-analyzed. In combination with genomic surveillance, the clinical outcome-associated mutations could help identify individuals for priority medical support.

3.
Health Inf Sci Syst ; 6(1): 22, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30483400

ABSTRACT

With the evolution of technology, the fields of medicine and science have also witnessed numerous advancements. In medical emergencies, a few minutes can be the difference between life and death. The obstacles encountered while providing medical assistance can be eliminated by ensuring quicker care and accessible systems. To this effect, the proposed end-to-end system-automated emergency paramedical response system (AEPRS) is semi-autonomous and utilizes aerial distribution by drones, for providing medical supplies on site in cases of paramedical emergencies as well as for patients with a standing history of diseases. Security of confidential medical information is a major area of concern for patients. Confidentiality has been achieved by using decentralised distributed computing to ensure security for the users without involving third-party institutions. AEPRS focuses not only on urban areas but also on semi-urban and rural areas. In urban areas where access to internet is widely available, a healthcare chatbot caters to the individual users and provides a diagnosis based on the symptoms provided by the patients. In semi-urban and rural areas, community hospitals have the option of providing specialised healthcare in spite of the absence of a specialised doctor. Additionally, object recognition and face recognition by using the concept of edge AI enables deep neural networks to run on the edge, without the need for GPU or internet connectivity to connect to the cloud. AEPRS is an airborne emergency medical supply delivery system. It uses the data entered by the user to deduce the best possible solution, in case of an alerted emergency situation and responds to the user accordingly.

SELECTION OF CITATIONS
SEARCH DETAIL
...