Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(6): 107315, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663827

ABSTRACT

Lewy bodies (LB) are aberrant protein accumulations observed in the brain cells of individuals affected by Parkinson's disease (PD). A comprehensive analysis of LB proteome identified over a hundred proteins, many co-enriched with α-synuclein, a major constituent of LB. Within this context, OTUB1, a deubiquitinase detected in LB, exhibits amyloidogenic properties, yet the mechanisms underlying its aggregation remain elusive. In this study, we identify two critical sites in OTUB1-namely, positions 133 and 173-that significantly impact its amyloid aggregation. Substituting alanine at position 133 and lysine at position 173 enhances both thermodynamic and kinetic stability, effectively preventing amyloid aggregation. Remarkably, lysine at position 173 demonstrates the highest stability without compromising enzymatic activity. The increased stability and inhibition of amyloid aggregation are attributed mainly to the changes in the specific microenvironment at the hotspot. In our exploration of the in-vivo co-occurrence of α-synuclein and OTUB1 in LB, we observed a synergistic modulation of each other's aggregation. Collectively, our study unveils the molecular determinants influencing OTUB1 aggregation, shedding light on the role of specific residues in modulating aggregation kinetics and structural transition. These findings contribute valuable insights into the complex interplay of amino acid properties and protein aggregation, with potential implications for understanding broader aspects of protein folding and aggregation phenomena.

2.
Proc Natl Acad Sci U S A ; 121(2): e2309664121, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38170746

ABSTRACT

Inorganic polyphosphate (polyP) is primarily synthesized by Polyphosphate Kinase-1 (PPK-1) and regulates numerous cellular processes, including energy metabolism, stress adaptation, drug tolerance, and microbial pathogenesis. Here, we report that polyP interacts with acyl CoA carboxylases, enzymes involved in lipid biosynthesis in Mycobacterium tuberculosis. We show that deletion of ppk-1 in M. tuberculosis results in transcriptional and metabolic reprogramming. In comparison to the parental strain, the Δppk-1 mutant strain had reduced levels of virulence-associated lipids such as PDIMs and TDM. We also observed that polyP deficiency in M. tuberculosis is associated with enhanced phagosome-lysosome fusion in infected macrophages and attenuated growth in mice. Host RNA-seq analysis revealed decreased levels of transcripts encoding for proteins involved in either type I interferon signaling or formation of foamy macrophages in the lungs of Δppk-1 mutant-infected mice relative to parental strain-infected animals. Using target-based screening and molecular docking, we have identified raloxifene hydrochloride as a broad-spectrum PPK-1 inhibitor. We show that raloxifene hydrochloride significantly enhanced the activity of isoniazid, bedaquiline, and pretomanid against M. tuberculosis in macrophages. Additionally, raloxifene inhibited the growth of M. tuberculosis in mice. This is an in-depth study that provides mechanistic insights into the regulation of mycobacterial pathogenesis by polyP deficiency.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Molecular Docking Simulation , Raloxifene Hydrochloride/metabolism , Polyphosphates/metabolism , Tuberculosis/microbiology , Metabolic Networks and Pathways , Bacterial Proteins/metabolism
3.
Antiviral Res ; 220: 105743, 2023 12.
Article in English | MEDLINE | ID: mdl-37949319

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2, lead to mild to severe respiratory illness and resulted in 6.9 million deaths worldwide. Although vaccines are effective in preventing COVID-19, they may not be sufficient to protect immunocompromised individuals from this respiratory illness. Moreover, novel emerging variants of SARS-CoV-2 pose a risk of new COVID-19 waves. Therefore, identification of effective antivirals is critical in controlling SARS and other coronaviruses, such as MERS-CoV. We show that Fangchinoline (Fcn), a bisbenzylisoquinoline alkaloid, inhibits replication of SARS-CoV, SARS-CoV-2, and MERS-CoV in a range of in vitro assays, by blocking entry. Therapeutic use of Fcn inhibited viral loads in the lungs, and suppressed associated airway inflammation in hACE2. Tg mice and Syrian hamster infected with SARS-CoV-2. Combination of Fcn with remdesivir (RDV) or an anti-leprosy drug, Clofazimine, exhibited synergistic antiviral activity. Compared to Fcn, its synthetic derivative, MK-04-003, more effectively inhibited SARS-CoV-2 and its variants B.1.617.2 and BA.5 in mice. Taken together these data demonstrate that Fcn is a pan beta coronavirus inhibitor, which possibly can be used to combat novel emerging coronavirus diseases.


Subject(s)
Benzylisoquinolines , COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , Mice , Animals , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Pandemics , Benzylisoquinolines/pharmacology , Benzylisoquinolines/therapeutic use
4.
J Biomol Struct Dyn ; 41(24): 15305-15319, 2023.
Article in English | MEDLINE | ID: mdl-36907648

ABSTRACT

Interface mimicry, achieved by recognition of host-pathogen interactions, is the basis by which pathogen proteins can hijack the host machinery. The envelope (E) protein of SARS-CoV-2 is reported to mimic the histones at the BRD4 surface via establishing the structural mimicry; however, the underlying mechanism of E protein mimicking the histones is still elusive. To explore the mimics at dynamic and structural residual network level an extensive docking, and MD simulations were carried out in a comparative manner between complexes of H3-, H4-, E-, and apo-BRD4. We identified that E peptide is able to attain an 'interaction network mimicry', as its acetylated lysine (Kac) achieves orientation and residual fingerprint similar to histones, including water-mediated interactions for both the Kac positions. We identified Y59 of E, playing an anchor role to escort lysine positioning inside the binding site. Furthermore, the binding site analysis confirms that E peptide needs a higher volume, similar to the H4-BRD4 where both the lysine's (Kac5 and Kac8) can accommodate nicely, however, the position of Kac8 is mimicked by two additional water molecules other than four water-mediated bridging's, strengthening the possibility that E peptide could hijack host BRD4 surface. These molecular insights seem pivotal for mechanistic understanding and BRD4-specific therapeutic intervention. KEY POINTSMolecular mimicry is reported in hijacking and then outcompeting the host counterparts so that pathogens can rewire their cellular function by overcoming the host defense mechanism.The molecular recognition process is the basis of molecular mimicry. The E peptide of SARS-CoV-2 is reported to mimic host histone at the BRD4 surface by utilizing its C-terminally placed acetylated lysine (Kac63) to mimic the N-terminally placed acetylated lysine Kac5GGKac8 histone (H4) by interaction network mimicry identified through microsecond molecular dynamics (MD) simulations and post-processing extensive analysis.There are two steps to mimic: firstly, tyrosine residues help E to anchor at the BRD4 surface to position Kac and increase the volume of the pocket. Secondary, after positioning of Kac, a common durable interaction network N140:Kac5; Kac5:W1; W1:Y97; W1:W2; W2:W3; W3:W4; W4:P82 is established between Kac5, with key residues P82, Y97, N140, and four water molecules through water mediate bridge. Furthermore, the second acetylated lysine Kac8 position and its interaction as polar contact with Kac5 were also mimicked by E peptide through interaction network P82:W5; W5:Kac63; W5:W6; W6:Kac63.The binding event at BRD4/BD1 seems an induced-fit mechanism as a bigger binding site volume was identified at H4-BRD4 on which E peptide attains its better stability than H3-BRD4.We identified the tyrosine residue Y59 of E that acts like an anchor on the BRD4 surface to position Kac inside the pocket and attain the interaction network by using aromatic residues of the BRD4 surface.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Histones , Humans , Histones/chemistry , Nuclear Proteins/chemistry , SARS-CoV-2/metabolism , Lysine , Transcription Factors/chemistry , Protein Binding , Peptides/metabolism , Tyrosine/metabolism , Water/metabolism , Bromodomain Containing Proteins , Cell Cycle Proteins/metabolism
5.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36986476

ABSTRACT

The development of potent non-nucleoside inhibitors (NNIs) could be an alternate strategy to combating infectious bovine viral diarrhea virus (BVDV), other than the traditional vaccination. RNA-dependent RNA polymerase (RdRp) is an essential enzyme for viral replication; therefore, it is one of the primary targets for countermeasures against infectious diseases. The reported NNIs, belonging to the classes of quinolines (2h: imidazo[4,5-g]quinolines and 5m: pyrido[2,3-g] quinoxalines), displayed activity in cell-based and enzyme-based assays. Nevertheless, the RdRp binding site and microscopic mechanistic action are still elusive, and can be explored at a molecular level. Here, we employed a varied computational arsenal, including conventional and accelerated methods, to identify quinoline compounds' most likely binding sites. Our study revealed A392 and I261 as the mutations that can render RdRp resistant against quinoline compounds. In particular, for ligand 2h, mutation of A392E is the most probable mutation. The loop L1 and linker of the fingertip is recognized as a pivotal structural determinant for the stability and escape of quinoline compounds. Overall, this work demonstrates that the quinoline inhibitors bind at the template entrance channel, which is governed by conformational dynamics of interactions with loops and linker residues, and reveals structural and mechanistic insights into inhibition phenomena, for the discovery of improved antivirals.

6.
J Phys Chem B ; 127(2): 465-485, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36609158

ABSTRACT

Elucidation of structural determinants is pivotal for structure-based drug discovery. The Farnesoid X receptor (FXR) is a proven target for NASH; however, its full agonism causes certain clinical complications. Therefore, partial agonism (PA) appears as a viable alternative for improved therapeutics. Since the agonist and PA both share the same binding site, i.e., ligand-binding pocket (LBP), which is highly dynamic and has synergy with the substrate binding site, the selective designing of PA is challenging. The identification of structural and conformational determinants is critical for PA compared with an agonist. Furthermore, the mechanism by which PA modulates the structural dynamics of FXR at the residue level, a prerequisite for PA designing, is still elusive. Here, by using ∼4.5 µs of MD simulations and residue-wise communication network analysis, we identified the structural regions which are flexible with PA but frozen with an agonist. Also, the network analysis identified the considerable changes between an agonist and PA in biologically essential zones of FXR such as helix H10/H11 and loop L:H11/H12, which lead to the modulation of synergy between LBP and the substrate binding site. Furthermore, the thermodynamic profiling suggested the methionine residues, mainly M328, M365, and M450, seem to be responsible for the recruitment of PA. The other residues I357, Y361, L465, F308, Q316, and K321 are also identified, exclusively interacting with PA. This study offers novel structural and mechanistic insights that are critical for FXR targeted drug discovery for PA designing.


Subject(s)
Drug Discovery , Receptors, Cytoplasmic and Nuclear , Binding Sites , Ligands , Protein Domains , Receptors, Cytoplasmic and Nuclear/agonists
7.
J Biomol Struct Dyn ; 41(11): 5117-5126, 2023 07.
Article in English | MEDLINE | ID: mdl-35652895

ABSTRACT

The present study is conducted to find the solution of rising antimicrobial resistance (AMR) in Escherichia coli which is a pathogen responsible for fatal systemic infections in human and animals. The enzyme dihydrofolate reductase (DHFR) is found in all organisms. In this study DHFR of E. coli (ec-DHFR) and human DHFR (h-DHFR) is targeted by novel chemical entities (NCE) from the Pathogen box of Medicines for Malaria Venture, Switzerland (MMV) using molecular modelling. The in-silico studies were further validated by in-vitro assays. The virtual screening of 400 MMV compounds was conducted using PyRx standard tool followed by manual docking of selected compounds by Autodock vina and Ligplot program. The in-silico studies showed good binding energy and strong hydrogen bond in docking of MMV675968 with ec-DHFR and no hydrogen bond with h-DHFR. This was further validated by the Molecular dynamic studies that revealed high binding free energy in ec-DHFR and in-vitro assays that produced good synergy in combination study of MMV675968 with last line (meropenem) and last resort (colistin) antibiotics. The extensive MD simulation and energetic analysis thus concludes that MMV675968 targets ec-DHFR. The combination studies were conducted with MMV675968 and FDA approved drugs against a panel of multidrug resistant Escherichia coli isolates. The synergistic results obtained in combination studies concluded that in-vitro data is consistent with in-silico data and that MMV675968 is a potential lead for future process of antimicrobial drug development against the multidrug resistance E. coli.Communicated by Ramaswamy H. Sarma.


Subject(s)
Escherichia coli , Tetrahydrofolate Dehydrogenase , Humans , Animals , Escherichia coli/metabolism , Tetrahydrofolate Dehydrogenase/chemistry , Anti-Bacterial Agents/pharmacology , Molecular Dynamics Simulation
8.
J Biomol Struct Dyn ; 40(5): 2189-2203, 2022 03.
Article in English | MEDLINE | ID: mdl-33074049

ABSTRACT

Tuberculosis (TB) has been recently declared as a health emergency because of sporadic increase in Multidrug-resistant Tuberculosis (MDR-TB) problem throughout the world. TB causing bacteria, Mycobacterium tuberculosis has become resistant to the first line of treatment along with second line of treatment and drugs, which are accessible to us. Thus, there is an urgent need of identification of key targets and development of potential therapeutic approach(s), which can overcome the Mycobacterium tuberculosis complications. In the present study, Mycobacterium tuberculosis proteasome has been taken as a potential target as it is one of the key regulatory proteins in Mycobacterium tuberculosis propagation. Further, a library of 400 compounds (small molecule) from Medicines for Malaria Venture (MMV) were screened against the target (proteasome) using molecular docking and simulation approach, and selected lead compounds were validated in in vitro model. In this study, we have identified two potent small molecules from the MMV Pathogen Box library, MMV019838 and MMV687146 with -9.8 kcal/mol and -8.7 kcal/mol binding energy respectively, which actively interact with the catalytic domain/active domain of Mycobacterium tuberculosis proteasome and inhibit the Mycobacterium tuberculosis growth in in vitro culture. Furthermore, the molecular docking and simulation study of MMV019838 and MMV687146 with proteasome show strong and stable interaction with Mycobacterium tuberculosis compared to human proteasome and show no cytotoxicity effect. A better understanding of proteasome inhibition in Mycobacterium tuberculosis in in vitro and in vivo model would eventually allow us to understand the molecular mechanism(s) and discover a novel and potent therapeutic agent against Tuberculosis. Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. Efflux pump activity was tested for a specific compound MMV019838 which was showing good in silico results than MIC values.Communicated by Ramaswamy H. Sarma.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/chemistry , Humans , Molecular Docking Simulation , Proteasome Inhibitors/metabolism , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy
9.
J Biomol Struct Dyn ; 40(20): 10162-10180, 2022.
Article in English | MEDLINE | ID: mdl-34151735

ABSTRACT

For coronaviruses, RNA-dependent RNA polymerase (RdRp) is an essential enzyme that catalyses the replication from RNA template and therefore remains an attractive therapeutic target for anti-COVID drug discovery. In the present study, we performed a comprehensive in silico screening for 16,776 potential molecules from recently established drug libraries based on two important pharmacophores (3-amino-4-phenylbutan-2-ol and piperazine). Based on initial assessment, 4042 molecules were obtained suitable as drug candidates, which were following Lipinski's rule. Molecular docking implemented for the analysis of molecular interactions narrowed this number of compounds down to 19. Subsequent to screening filtering criteria and considering the critical parameters viz. docking score and MM-GBSA binding free energy, 1-(4-((2S,3S)-3-amino-2-hydroxy-4-phenylbutyl)piperazin-1-yl)-3-phenylurea (compound 1) was accomplished to score highest in comparison to the remaining 18 shortlisted drug candidates. Notably, compound 1 displayed higher docking score (-8.069 kcal/mol) and MM-GBSA binding free energy (-49.56 kcal/mol) than the control drug, remdesivir triphosphate, the active form of remdesivir as well as adenosine triphosphate. Furthermore, a molecular dynamics simulation was carried out (100 ns), which substantiated the candidacy of compound 1 as better inhibitor. Overall, our systematic in silico study predicts the potential of compound 1 to exhibit a more favourable specific activity than remdesivir triphosphate. Hence, we suggest compound 1 as a novel potential drug candidate, which should be considered for further exploration and validation of its potential against SARS-CoV-2 in wet lab experimental studies.Communicated by Ramasawamy H. Sarma.


Subject(s)
Antiviral Agents , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Adenosine Triphosphate , Antiviral Agents/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects
10.
J Biomol Struct Dyn ; 40(19): 9287-9305, 2022.
Article in English | MEDLINE | ID: mdl-34029506

ABSTRACT

The main protease, Mpro/3CLpro, plays an essential role in processing polyproteins translated from viral RNA to produce functional viral proteins and therefore serve as an attractive target for discovering COVID-19 therapeutics. The availability of both monomer and dimer crystal bound with a common ligand, '13b' (α-ketoamide inhibitor), opened up opportunities to understand the Mpro mechanism of action. A comparative analysis of both forms of Mpro was carried out to elucidate the binding site architectural differences in the presence and absence of '13b'. Molecular dynamics simulations suggest that the presence of '13b' enhances the stability of Mpro than the unbound APO form. The N- and C- terminals of both the protomers stabilize each other, and making it's interface essential for the active form of Mpro. In comparison to monomer, the relatively high affinity of '13b' is gained in dimer pocket due to the high stability of the pocket by the interaction of S1 residue of chain B with residues F140, E166 and H172 of chain A, which is absent in monomer. The comprehensive essential dynamics, protein structure network analysis and thermodynamic profiling highlight the hot-spots, pivotal in molecular recognition process at protein-ligand and protein-protein interaction levels, cross-validated through computational alanine scanning study. A comparative description of '13b' binding mechanism in both forms illustrates valuable insights into the inhibition mechanism and the selection of critical residues suitable for the structure-based approaches for the identification of more potent Mpro inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Humans , Ligands , Cysteine Endopeptidases/chemistry , SARS-CoV-2/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation
11.
J Biomol Struct Dyn ; 40(19): 8644-8654, 2022.
Article in English | MEDLINE | ID: mdl-33955331

ABSTRACT

As a consequence of present status of tuberculosis (TB) it is the obligation to develop novel targets and potential drugs so that rate of drug resistant TB can be declined. Mycobacterium proteasome is considered to be significant target for the purpose of drug designing as it is responsible for resisting the effect of NO (nitric oxide) immune system defence mechanism against the bacterial cells. Small compounds library from Enamine database has already been tested using virtual screening and molecular docking studies. Further a reanalysis with two picked out significant compounds Z1020863610, Z106766984 was carried out using molecular dynamic simulation studies and in vitro validations (in vitro susceptibility assay, enzyme inhibition assay and MTT assay). In silico outcome that two inhibiters were interacting at the active site pocket of receptor with high stability, was found to be very consistent with in vitro results. So it was conferred that compounds (Z1020863610, Z106766984) are potential lead for future process of drug development (in vivo testing and clinical trials).Communicated by Ramaswamy H. Sarma.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/chemistry , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Molecular Docking Simulation , Tuberculosis, Multidrug-Resistant/drug therapy , Molecular Dynamics Simulation
12.
Protein Sci ; 31(9): e4398, 2022 09.
Article in English | MEDLINE | ID: mdl-36629250

ABSTRACT

The ability to predict the intricate mechanistic behavior of ligands and associated structural determinants during protein-ligand (un)binding is of great practical importance in drug discovery. Ubiquitin specific protease-7 (USP7) is a newly emerging attractive cancer therapeutic target with bound allosteric inhibitors. However, none of the inhibitors have reached clinical trials, allowing opportunities to examine every aspect of allosteric modulation. The crystallographic insights reveal that these inhibitors have common properties such as chemical scaffolds, binding site and interaction fingerprinting. However, they still possess a broader range of binding potencies, ranging from 22 nM to 1,300 nM. Hence, it becomes more critical to decipher the structural determinants guiding the enhanced binding potency of the inhibitors. In this regard, we elucidated the atomic-level insights from both interacting partners, that is, protein-ligand perspective, and established the structure-activity link between USP7 inhibitors by using classical and advanced molecular dynamics simulations combined with linear interaction energy and molecular mechanics-Poisson Boltzmann surface area. We revealed the inhibitor potency differences by examining the contributions of chemical moieties and USP7 residues, the involvement of water-mediated interactions, and the thermodynamic landscape alterations. Additionally, the dissociation profiles aided in the establishment of a correlation between experimental potencies and structural determinants. Our study demonstrates the critical role of blocking loop 1 in allosteric inhibition and enhanced binding affinity. Comprehensively, our findings provide a constructive expansion of experimental outcomes and show the basis for varying binding potency using in-silico approaches. We expect this atomistic approach to be useful for effective drug design.


Subject(s)
Molecular Dynamics Simulation , Ubiquitin-Specific Peptidase 7 , Binding Sites , Ligands , Protein Binding , Protein Domains , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors
13.
Int J Biol Macromol ; 193(Pt B): 1845-1858, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34762917

ABSTRACT

Microbial amino acid biosynthetic pathways are underexploited for the development of anti-bacterial agents. N-acetyl glutamate synthase (ArgA) catalyses the first committed step in L-arginine biosynthesis and is essential for M. tuberculosis growth. Here, we have purified and optimized assay conditions for the acetylation of l-glutamine by ArgA. Using the optimized conditions, high throughput screening was performed to identify ArgA inhibitors. We identified 2,5-Bis (2-chloro-4-guanidinophenyl) furan, a dicationic diaryl furan derivatives, as ArgA inhibitor, with a MIC99 values of 1.56 µM against M. tuberculosis. The diaryl furan derivative displayed bactericidal killing against both M. bovis BCG and M. tuberculosis. Inhibition of ArgA by the lead compound resulted in transcriptional reprogramming and accumulation of reactive oxygen species. The lead compound and its derivatives showed micromolar binding with ArgA as observed in surface plasmon resonance and tryptophan quenching experiments. Computational and dynamic analysis revealed that these scaffolds share similar binding site residues with L-arginine, however, with slight variations in their interaction pattern. Partial restoration of growth upon supplementation of liquid cultures with either L-arginine or N-acetyl cysteine suggests a multi-target killing mechanism for the lead compound. Taken together, we have identified small molecule inhibitors against ArgA enzyme from M. tuberculosis.


Subject(s)
Amino-Acid N-Acetyltransferase , Antitubercular Agents/chemistry , Bacterial Proteins , Enzyme Inhibitors/chemistry , Mycobacterium tuberculosis/enzymology , Amino-Acid N-Acetyltransferase/antagonists & inhibitors , Amino-Acid N-Acetyltransferase/chemistry , Antitubercular Agents/therapeutic use , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Enzyme Inhibitors/therapeutic use , Furans , Mycobacterium bovis/enzymology
14.
Front Mol Biosci ; 8: 639614, 2021.
Article in English | MEDLINE | ID: mdl-34490343

ABSTRACT

The COVID-19 pandemic has now strengthened its hold on human health and coronavirus' lethal existence does not seem to be going away soon. In this regard, the optimization of reported information for understanding the mechanistic insights that facilitate the discovery towards new therapeutics is an unmet need. Remdesivir (RDV) is established to inhibit RNA-dependent RNA polymerase (RdRp) in distinct viral families including Ebola and SARS-CoV-2. Therefore, its derivatives have the potential to become a broad-spectrum antiviral agent effective against many other RNA viruses. In this study, we performed comparative analysis of RDV, RMP (RDV monophosphate), and RTP (RDV triphosphate) to undermine the inhibition mechanism caused by RTP as it is a metabolically active form of RDV. The MD results indicated that RTP rearranges itself from its initial RMP-pose at the catalytic site towards NTP entry site, however, RMP stays at the catalytic site. The thermodynamic profiling and free-energy analysis revealed that a stable pose of RTP at NTP entrance site seems critical to modulate the inhibition as its binding strength improved more than its initial RMP-pose obtained from docking at the catalytic site. We found that RTP not only occupies the residues K545, R553, and R555, essential to escorting NTP towards the catalytic site, but also interacts with other residues D618, P620, K621, R624, K798, and R836 that contribute significantly to its stability. From the interaction fingerprinting it is revealed that the RTP interact with basic and conserved residues that are detrimental for the RdRp activity, therefore it possibly perturbed the catalytic site and blocked the NTP entrance site considerably. Overall, we are highlighting the RTP binding pose and key residues that render the SARS-CoV-2 RdRp inactive, paving crucial insights towards the discovery of potent inhibitors.

15.
Front Mol Biosci ; 8: 658312, 2021.
Article in English | MEDLINE | ID: mdl-34532338

ABSTRACT

FXR bioactive states are responsible for the regulation of metabolic pathways, which are modulated by agonists and co-activators. The synergy between agonist binding and 'co-activator' recruitment is highly conformationally driven. The characterization of conformational dynamics is essential for mechanistic and therapeutic understanding. To shed light on the conformational ensembles, dynamics, and structural determinants that govern the activation process of FXR, molecular dynamic (MD) simulation is employed. Atomic insights into the ligand binding domain (LBD) of FXR revealed significant differences in inter/intra molecular bonding patterns, leading to structural anomalies in different systems of FXR. The sole presence of an agonist or 'co-activator' fails to achieve the essential bioactive conformation of FXR. However, the presence of both establishes the bioactive conformation of FXR as they modulate the internal wiring of key residues that coordinate allosteric structural transitions and their activity. We provide a precise description of critical residue positioning during conformational changes that elucidate the synergy between its binding partners to achieve an FXR activation state. Our study offers insights into the associated modulation occurring in FXR at bound and unbound forms. Thereafter, we also identified hot-spots that are critical to arrest the activation mechanism of FXR that would be helpful for the rational design of its agonists.

16.
J Chem Inf Model ; 61(3): 1105-1124, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33606530

ABSTRACT

Sirt1-3 are the most studied sirtuins, playing a key role in caloric-dependent epigenetic modifications. Since they are localized in distinct cellular compartments and act differently under various pathological conditions, selective inhibition would be a promising strategy to understand their biological function and to discover effective therapeutics. Here, sirtuin's inhibitor Ex527* is used as a probe to speculate the possible root cause of selective inhibition and differential structural dynamics of Sirt1-3. Comparative energetics and mutational studies revealed the criticality of residues I279 and I316 for the Sirt1 selectivity toward Ex527*. Furthermore, essential dynamics and residue network analysis revealed that the side-chain reorientation in residue F190 due to nonconserved residue Y191 played a major role in the formation of an extended selectivity pocket in Sirt2. These changes at the dynamical and residual level, which impact the internal wiring significantly, might help in rationally designing selective inhibitors against Sirt1-3.


Subject(s)
Sirtuin 1/chemistry , Sirtuin 2/chemistry , Sirtuin 3/chemistry , Amino Acid Sequence , Humans , Protein Conformation
17.
J Chem Inf Model ; 61(1): 358-384, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33433201

ABSTRACT

The dynamics and plasticity of the PD-1/PD-L1 axis are the bottlenecks for the discovery of small-molecule antagonists to perturb this interaction interface significantly. Understanding the process of this protein-protein interaction (PPI) is of fundamental biological interest in structure-based drug designing. Food and Drug Administration (FDA)-approved anti-PD-1 monoclonal antibodies (mAbs) are the first-in-class with distinct binding modes to access this axis clinically; however, their mechanistic aspects remain elusive. Here, we have unveiled the interactive interfaces with PD-L1 and mAbs to investigate the native plasticity of PD-1 at global (structural and dynamical) and local (residue side-chain orientations) levels. We found that the structural stability and coordinated Cα movements are increased in the presence of PD-1's binding partners. The rigorous analysis of these PPIs using computational biophysical approaches revealed PD-1's intrinsic plasticity, its concerted loops' movement (BC, FG, and CC'), distal side-chain motions, and the thermodynamic landscape, which are perturbed remarkably from its unbound to bound states. Based on intra-/inter-residues' contact networks and energetics, the hot-spots have been identified that were found to be essential to arrest the dynamical motions of PD-1 significantly for the rational design of therapeutic agents by mimicking the mAbs mechanism.


Subject(s)
Programmed Cell Death 1 Receptor , Models, Molecular , Protein Binding , Protein Conformation
18.
J Biomol Struct Dyn ; 39(10): 3662-3680, 2021 07.
Article in English | MEDLINE | ID: mdl-32396769

ABSTRACT

The pandemic caused by novel coronavirus disease 2019 (COVID-19) infecting millions of populations worldwide and counting, has demanded quick and potential therapeutic strategies. Current approved drugs or molecules under clinical trials can be a good pool for repurposing through in-silico techniques to quickly identify promising drug candidates. The structural information of recently released crystal structures of main protease (Mpro) in APO and complex with inhibitors, N3, and 13b molecules was utilized to explore the binding site architecture through Molecular dynamics (MD) simulations. The stable state of Mpro was used to conduct extensive virtual screening of the aforementioned drug pool. Considering the recent success of HIV protease molecules, we also used anti-protease molecules for drug repurposing purposes. The identified top hits were further evaluated through MD simulations followed by the binding free energy calculations using MM-GBSA. Interestingly, in our screening, several promising drugs stand out as potential inhibitors of Mpro. However, based on control (N3 and 13b), we have identified six potential molecules, Leupeptin Hemisulphate, Pepstatin A, Nelfinavir, Birinapant, Lypression and Octreotide which have shown the reasonably significant MM-GBSA score. Further insight shows that the molecules form stable interactions with hot-spot residues, that are mainly conserved and can be targeted for structure- and pharmacophore-based designing. The pharmacokinetic annotations and therapeutic importance have suggested that these molecules possess drug-like properties and pave their way for in-vitro studies.Communicated by Ramaswamy H. Sarma.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Molecular Docking Simulation
19.
J Phys Chem B ; 123(29): 6150-6160, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31251051

ABSTRACT

RNA-dependent RNA polymerase (RdRp) is a relevant antiviral drug target. We investigated a potent benzimidazole inhibitor (227G; IC50 = 0.002 µM) against bovine viral diarrhea virus (BVDV) RdRp; however, its inhibition action was completely impaired in the presence of a resistant mutation, I261M. The binding of 227G in mutant RdRp affected the binding site loop conformations (especially Linker) that increased the volume of the binding site. It was also observed that the innate Linker's flexibility was retained, which was otherwise completely frozen in the wild-type complex. The functional role of Linker was hypothesized that it is a multidocking site for RNA template, inhibitors, and the other proteins involved in replication complex formation. The binding phenomenon requires significant molecular flexibility and the large-amplitude conformational dynamics of Linker, which is currently unknown. We observed a bidirectional "hinge"-like motion of Linker from crystal position, indicating its pronounced flexible behavior. This study underscores the importance of Linker's flexibility in the functionality of BVDV RdRp and proposes the template entrance site for selective anti-BVDV drug discovery.


Subject(s)
Diarrhea Viruses, Bovine Viral/enzymology , RNA-Dependent RNA Polymerase/chemistry , Binding Sites , Molecular Docking Simulation , Molecular Dynamics Simulation , Movement , Mutation , Protein Conformation , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism
20.
Oncotarget ; 9(76): 34289-34305, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30344943

ABSTRACT

The plasticity in Ubiquitin Specific Proteases (USP7) inducing conformational changes at important areas has highlighted an intricate mechanism, by which USP7 is regulated. Given the importance of USP7 in oncogenic pathways and immune-oncology, identification of USP7 inhibitors has attracted considerable interest. Despite substantial efforts, the discovery of deubiquitinases (DUBs) inhibitors, knowledge of their binding site and understanding the possible mechanism of action has proven particularly challenging. We disclose the most likely binding site of P5091 (a potent USP7 inhibitor), which reveal a cryptic allosteric site through extensive computational studies in an inhibitor dependent and independent manner. Overall, these findings demonstrate the tractability and druggability of USP7. Through a series of molecular dynamics simulations and detailed quantitative analysis, a dynamically stable allosteric binding site near catalytic center of the inactive state of USP7 (site partially absent in active state), along with two newly identified sites have been revealed, which opens the avenue for rational structure-guided inhibitor designing in USP7 specific-manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...