Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Molecules ; 29(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38999066

ABSTRACT

Aldehyde dehydrogenases (ALDHs) are a family of enzymes that aid in detoxification and are overexpressed in several different malignancies. There is a correlation between increased expression of ALDH and a poor prognosis, stemness, and resistance to several drugs. Several ALDH inhibitors have been generated due to the crucial role that ALDH plays in cancer stem cells. All of these inhibitors, however, are either ineffective, very toxic, or have yet to be subjected to rigorous testing on their effectiveness. Although various drug-like compounds targeting ALDH have been reported in the literature, none have made it to routine use in the oncology clinic. As a result, new potent, non-toxic, bioavailable, and therapeutically effective ALDH inhibitors are still needed. In this study, we designed and synthesized potent multi-ALDH isoform inhibitors based on the isatin and indazole pharmacophore. Molecular docking studies and enzymatic tests revealed that among all of the synthesized analogs, compound 3 is the most potent inhibitor of ALDH1A1, ALDH3A1, and ALDH1A3, exhibiting 51.32%, 51.87%, and 36.65% inhibition, respectively. The ALDEFLUOR assay further revealed that compound 3 acts as an ALDH broad spectrum inhibitor at 500 nM. Compound 3 was also the most cytotoxic to cancer cells, with an IC50 in the range of 2.1 to 3.8 µM for ovarian, colon, and pancreatic cancer cells, compared to normal and embryonic kidney cells (IC50 7.1 to 8.7 µM). Mechanistically, compound 3 increased ROS activity due to potent multi-ALDH isoform inhibition, which increased apoptosis. Taken together, this study identified a potent multi-isoform ALDH inhibitor that could be further developed as a cancer therapeutic.


Subject(s)
Aldehyde Dehydrogenase , Enzyme Inhibitors , Isatin , Molecular Docking Simulation , Humans , Isatin/chemistry , Isatin/pharmacology , Aldehyde Dehydrogenase/antagonists & inhibitors , Aldehyde Dehydrogenase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Molecular Structure
2.
Int Orthop ; 48(5): 1303-1311, 2024 May.
Article in English | MEDLINE | ID: mdl-38499714

ABSTRACT

PURPOSE: AI has shown promise in automating and improving various tasks, including medical image analysis. Distal humerus fractures are a critical clinical concern that requires early diagnosis and treatment to avoid complications. The standard diagnostic method involves X-ray imaging, but subtle fractures can be missed, leading to delayed or incorrect diagnoses. Deep learning, a subset of artificial intelligence, has demonstrated the ability to automate medical image analysis tasks, potentially improving fracture identification accuracy and reducing the need for additional and cost-intensive imaging modalities (Schwarz et al. 2023). This study aims to develop a deep learning-based diagnostic support system for distal humerus fractures using conventional X-ray images. The primary objective of this study is to determine whether deep learning can provide reliable image-based fracture detection recommendations for distal humerus fractures. METHODS: Between March 2017 and March 2022, our tertiary hospital's PACS data were evaluated for conventional radiography images of the anteroposterior (AP) and lateral elbow for suspected traumatic distal humerus fractures. The data set consisted of 4931 images of patients seven years and older, after excluding paediatric images below seven years due to the absence of ossification centres. Two senior orthopaedic surgeons with 12 + years of experience reviewed and labelled the images as fractured or normal. The data set was split into training sets (79.88%) and validation tests (20.1%). Image pre-processing was performed by cropping the images to 224 × 224 pixels around the capitellum, and the deep learning algorithm architecture used was ResNet18. RESULTS: The deep learning model demonstrated an accuracy of 69.14% in the validation test set, with a specificity of 95.89% and a positive predictive value (PPV) of 99.47%. However, the sensitivity was 61.49%, indicating that the model had a relatively high false negative rate. ROC analysis showed an AUC of 0.787 when deep learning AI was the reference and an AUC of 0.580 when the most senior orthopaedic surgeon was the reference. The performance of the model was compared with that of other orthopaedic surgeons of varying experience levels, showing varying levels of diagnostic precision. CONCLUSION: The developed deep learning-based diagnostic support system shows potential for accurately diagnosing distal humerus fractures using AP and lateral elbow radiographs. The model's specificity and PPV indicate its ability to mark out occult lesions and has a high false positive rate. Further research and validation are necessary to improve the sensitivity and diagnostic accuracy of the model for practical clinical implementation.


Subject(s)
Fractures, Bone , Humeral Fractures, Distal , Humans , Child , Artificial Intelligence , Fractures, Bone/diagnostic imaging , Radiography , Algorithms , Retrospective Studies
3.
J Biomol Struct Dyn ; : 1-21, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319034

ABSTRACT

Drug-resistant Staphylococcus aureus strains are global health concerns. Several studies have shown that these strains can develop defences against cell wall antibiotics such as ß-lactams, glycopeptides and daptomycin which target cell wall biosynthesis. The coordination of these responses have been associated with two component system (TCS) regulated by histidine kinase protein (VraS) and its cognate regulator VraR which influences the target DNA upon signal recognition. Computer-based screening methods, predictions and simulations have emerged as more efficient and quick ways to identify promising new compound leads from large databases against emerging drug targets thus allowing prediction of small select set of molecules for further validations. These combined approaches conserve valuable time and resources. Due to methicillin resistance, sulfonamide-derivative medications have been found to be effective treatment strategy to treat S. aureus infections. The current study used ligand-based virtual screening (LBVS) to identify powerful sulfonamide derivative inhibitors from an antibacterial compound library against VraSR signaling components, VraS and VraR. We identified promising sulfonamide derivative [compound 5: (4-[(1-{[(3,5-Dimethoxyphenyl)Carbamoyl]Methyl}-2,4-Dioxo-1,2,3,4-Tetrahydroquinazolin-3-Yl)Methyl]-N-[(Furan-2-Yl)Methyl]Benzamide)] with reasonable binding parameters of -31.38 kJ/mol and ΔGbind score of -294.32 kJ/mol against ATP binding domain of sensor kinase VraS. We further identified four compounds N1 (PCID83276726), N3 (PCID83276757), N9 (PCID3672584), and N10 (PCID20900589) against VraR DNA binding domain (VraRC) with ΔGbind energies of -190.27, -237.54, -165.21, and -190.88 kJ/mol, respectively. Structural and simulation analyses further suggest their stable interactions with DNA interacting residues and potential to disrupt DNA binding domain dimerization; therefore, it is prudent to further investigate and characterize them as VraR dimer disruptors and inhibit other promoter binding site. Interestingly, the discovery of drugs that target VraS and VraR may open new therapeutic avenues for drug-resistant S. aureus. These predictions based on screening, simulations and binding affinities against VraSR components hold promise for opening novel therapeutic avenues against drug-resistant S. aureus and present opportunities for repositioning efforts. These efforts aim to create analogs with enhanced potency and selectivity against two-component signaling systems that significantly contribute to virulence in MRSA or VRSA. These analyses contribute valuable insights into potential avenues for combating antibiotic-resistant S. aureus through computationally driven drug discovery strategies.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; 42(7): 3712-3730, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37293938

ABSTRACT

Two component signaling system ArlRS (Autolysis-related locus) regulates adhesion, biofilm formation and virulence in methicillin resistant Staphylococcus aureus. It consists of a histidine kinase ArlS and response regulator ArlR. ArlR is composed of a N-terminal receiver domain and DNA-binding effector domain at C-terminal. ArlR receiver domain dimerizes upon signal recognition and activates DNA binding by effector domain and subsequent virulence expression. In silico simulation and structural data suggest that coumestrol, a phytochemical found in Pueraria montana, forges a strong intermolecular interaction with residues involved in dimer formation and destabilizes ArlR dimerization, an essential conformational switch required for downstream effector domain to bind to virulent loci. Structural and energy profiles of simulated ArlR-coumestrol complexes suggest lower affinity between ArlR monomers due to structural rigidity at the dimer interface hindering the conformational rearrangements relevant for dimer formation. These analyses could be an attractive strategy to develop therapeutics and potent leads molecules response regulators of two component systems in which are involved in MRSA virulence as well as other drug-resistant pathogens.Communicated by Ramaswamy H. Sarma.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/metabolism , Virulence , Staphylococcus aureus , Coumestrol/pharmacology , Coumestrol/metabolism , Bacterial Proteins/metabolism , Protein Kinases/metabolism , DNA/metabolism
5.
Nephrology (Carlton) ; 29(1): 48-54, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37772439

ABSTRACT

BACKGROUND: Accurate genetic diagnosis of end-stage renal disease patients with a family history of renal dysfunction is very essential. It not only helps in proper prognosis, but becomes crucial in designating donor for live related renal transplant. We here present a case of family with deleterious mutations in INF2 and ROBO2 and its importance of genetic testing before preparing for kidney transplantation. CASE PRESENTATION: We report the case of a 29-year-female with end-stage renal disease and rapidly progressive renal failure. Mutational analysis revealed an Autosomal Dominant inheritance pattern and mutation in exon 4 of the INF2 gene (p. Thr215Ser) and exon 26 of the ROBO2 gene (p. Arg1371Cys). Her mother was diagnosed for CKD stage 4 with creatinine level of 4.3 mg/dL. Genetic variants (INF2 and ROBO2) identified in proband were tested in her sisters and mother. Her elder sister was positive for both heterozygous variants (INF2 and ROBO2). Her mother was positive for mutation in INF2 gene, and her donor elder sister did not showed mutation in INF2 gene and had mutation in ROBO2 gene without any clinical symptoms. CONCLUSION: This case report emphasize that familial genetic screening has allowed us in allocating the donor selection in family where family member had history of genetic defect of Chronic Kidney Disease. Information of the causative renal disorder is extremely valuable for risk-assessment and planning of kidney transplantation.


Subject(s)
Glomerulosclerosis, Focal Segmental , Kidney Failure, Chronic , Kidney Transplantation , Humans , Female , Aged , Formins/genetics , Follow-Up Studies , Glomerulosclerosis, Focal Segmental/genetics , Mutation , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/genetics , Kidney Failure, Chronic/surgery , Pedigree , Roundabout Proteins , Receptors, Immunologic/genetics
6.
J Comput Aided Mol Des ; 37(11): 551-563, 2023 11.
Article in English | MEDLINE | ID: mdl-37542610

ABSTRACT

Omicron derived lineages viz. BA.2, BA.3, BA.4 BA.5, BF.7 and XBBs show prominence with improved immune escape, transmissibility, infectivity, and pathogenicity in general. Sub-variants, XBB.1.5 and XBB.1.16 have shown rapid spread, with mutations embedded throughout the viral genome, including the spike protein. Changing atomic landscapes in spike contributes significantly to modulate host pathogen interactions and infections thereof. In the present work, we computationally analyzed the binding affinities of spike receptor binding domains (RBDs) of XBB.1.5 and XBB.1.16 towards human angiotensin-converting enzyme 2 (hACE2) compared to Omicron. We have employed simulations and binding energy estimation of molecular complexes of spike-hACE2 to assess the interplay of interaction pattern and effect of mutations if any in the binding mode of the RBDs of these novel mutants. We calculated the binding free energy (BFE) of the RBD of the Omicron, XBB.1.5 and XBB.1.16 spike protein to hACE2. We showed that XBB.1.5 and XBB.1.16 can bind to human cells more strongly than Omicron due to the increased charge of the RBD, which enhances the electrostatic interactions with negatively charged hACE2. The per-residue decompositions further show that the Asp339His, Asp405Asn and Asn460Lys mutations in the XBBs RBD play a crucial role in enhancing the electrostatic interactions, by acquiring positively charged residues, thereby influencing the formation/loss of interfacial bonds and thus strongly affecting the spike RBD-hACE2 binding affinity. Simulation results also indicate less interference of heterogeneous glycans of XBB.1.5 spike RBD towards binding to hACE2. Moreover, despite having less interaction at the three interfacial contacts between XBB S RBD and hACE2 compared to Omicron, variants XBB.1.5 and XBB.1.16 had higher total binding free energies (ΔGbind) than Omicron due to the contribution of non-interfacial residues to the free energy, providing insight into the increased binding affinity of XBB1.5 and XBB.1.16. Furthermore, the presence of large positively charged surface patches in the XBBs act as drivers of electrostatic interactions, thus support the possibility of a higher binding affinity to hACE2.


Subject(s)
Molecular Dynamics Simulation , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , Mutation , Polysaccharides , Software , Protein Binding
7.
J Orthop Case Rep ; 13(7): 121-125, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37521390

ABSTRACT

Introduction: Multiligament knee injuries (MLKIs) are difficult to manage occurrence and are usually associated with poor functional outcomes. Knee dislocations involving both cruciate ligaments are relatively rare compared to other multifilament injuries involving one cruciate ligament and a collateral ligament. Multiple studies have reported the Tegnor score after surgery as 3 or 4. In 44% of cases with posterolateral corner (PLC) injury and biceps femoris tendon rupture or avulsion of the fibular head, a palsy of the common peroneal nerve (CPN) occurs. About half of these cases do not exhibit functional recovery. Case Report: A 20 years old long jump national athlete sustained varus and hyperextension injury leading to a multiligament knee injury (anterior cruciate ligament, posterior cruciate ligament, PLC, and medial collateral ligament) and CPN palsy. After a staged surgical procedure and structured rehabilitation protocol, the athlete was able to return to preinjury level in 18 months. At present, 4 years postoperatively, the patient can walk full weight-bearing with no instability. On the latest follow-up, the Lachman's test is negative, posterior drawer test negative, varus, and valgus stress test negative. Knee ranges of motion 0 to 140 degrees. The patient reported that Tegnor Score was 8. Conclusion: Surgical management of MKLI with CPN palsy can give reasonable functional outcome.

8.
F1000Res ; 12: 516, 2023.
Article in English | MEDLINE | ID: mdl-37274828

ABSTRACT

Background: Bibliometric analysis is an approach adopted by researchers to understand the various analytics such as year-wise publications, their citations, most impactful authors and their contributions, identification of emerging keywords, multiple themes (niche, motor, basic, and emerging or declining) etc. F1000Research is one of the Q1 category journals that publishes articles in various domains, but a detailed journal analysis is yet to be done. Methods: This study is an effort to extract the F1000Research journey information through bibliometric analysis using VOS-viewer and Biblioshiny (R-studio) interface. The F1000Research journal started its journey in 2012; since then, 5767 articles have been published until the end of 2022. Most of the published articles are from medical science, covering Biochemistry, Genetics & Molecular Biology, Immunology & Pharmacology, Toxicology & Pharmaceutics. To understand the research journey, various analyses such as publication & citation trends, leading authors, institutions, countries, most frequent keywords, bibliographic coupling between authors, countries and documents, emerging research themes, and trending keywords were performed. Results: The United States is the biggest contributor, and COVID-19 is the most commonly occurred keyword. Conclusions: The present study may help future researchers to understand the emerging medical science domain. It will also help the editors and journal to focus more on developing or emerging areas and to understand their importance towards society. Future researchers can contribute their quality research studies, focusing on emerging themes. These authors' research can guide future researchers to develop their research area around the most impacted articles. They can collaborate with them to bring that emerging theme forward.


Subject(s)
COVID-19 , United States , Humans , Bibliometrics , Publications
9.
Comput Biol Med ; 158: 106863, 2023 05.
Article in English | MEDLINE | ID: mdl-37030267

ABSTRACT

Mycobacterium tuberculosis is leading cause of death worldwide. NAD participates in a host of redox reactions in energy landscape of organisms. Several studies implicate surrogate energy pathways involving NAD pools as important in survival of active as well as dormant mycobacteria. One of the NAD metabolic pathway enzyme, nicotinate mononucleotide adenylyltransferase (NadD) is indispensable in mycobacterial NAD metabolism and is perceived as an attractive drug target in pathogen. In this study, we have employed in silico screening, simulation and MM-PBSA strategies to identify potentially important alkaloid compounds against mycobacterial NadD for structure-based inhibitor development. We have performed an exhaustive structure-based virtual screening of an alkaloid library, ADMET, DFT profiling followed by Molecular Dynamics (MD) simulation, and Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculation to identify 10 compounds which exhibit favourable drug like properties and interactions. Interaction energies of these 10 alkaloid molecules range between -190 kJ/mol and -250 kJ/mol. These compounds could be promising starting point in the development of selective inhibitors against Mycobacterium tuberculosis.


Subject(s)
Alkaloids , Antineoplastic Agents , Mycobacterium tuberculosis , NAD , Molecular Dynamics Simulation , Alkaloids/pharmacology , Molecular Docking Simulation
10.
Int Immunopharmacol ; 118: 110100, 2023 May.
Article in English | MEDLINE | ID: mdl-37011501

ABSTRACT

Entamoeba histolytica (Eh), a microaerophilic parasite, causes deadly enteric infections that result in Amoebiasis. Every year, the count of invasive infections reaches 50 million approximately and 40,000 to 1,00,000 deaths occurring due to amoebiasis are reported globally. Profound inflammation is the hallmark of severe amoebiasis which is facilitated by immune first defenders, neutrophils. Due to size incompatibility, neutrophils are unable to phagocytose Eh and thus, came up with the miraculous antiparasitic mechanism of neutrophil extracellular traps (NETs). This review provides an in-depth analysis of NETosis induced by Eh including the antigens involved in the recognition of Eh and the biochemistry of NET formation. Additionally, it underscores its novelty by describing the dual role of NETs in amoebiasis where it acts as a double-edged sword in terms of both clearing and exacerbating amoebiasis. It also provides a comprehensive account of the virulence factors discovered to date that are implicated directly and indirectly in the pathophysiology of Eh infections through the lens of NETs and can be interesting drug targets.


Subject(s)
Entamoeba histolytica , Entamoebiasis , Extracellular Traps , Entamoebiasis/drug therapy , Entamoebiasis/epidemiology , Entamoebiasis/physiopathology , Neutrophils , Drug Delivery Systems , Humans , Antigens, Nuclear
11.
Int J Biol Macromol ; 238: 124154, 2023 May 31.
Article in English | MEDLINE | ID: mdl-36965551

ABSTRACT

Fear of a fresh infection wave and a global health issue in the ongoing COVID-19 pandemic have been rekindled by the appearance of two new novel variants BF.7 and BA.4/5 of Omicron lineages. Predictions of increased antibody evasion capabilities and transmissibility have been recognised in addition to the existing lineages (BA.1.1, BA.2, BA.2.12.1 and BA.3) as cause for worry. In comparison to Omicron, BA.4 and BF.7 share nine mutations in the spike protein, Leu371Phe, Thr376Ala, Asp405Asn, Arg408Ser, Ser446Gly, Leu452Arg, Phe486Val, Arg493Gln, Ser496Gly, whereas BF.7 contains an additional mutation, Arg346Thr, in the receptor binding domain (RBD) region. Due to the critical need for analysis and data on the BA.4 and BF.7 variants, we have computationally analyzed the interaction pattern between the Omicron, BA.4 and BF.7 RBD and angiotensin-converting enzyme 2 (ACE2) to determine the influence of these unique mutations on the structures, functions, and binding affinity of RBD towards ACE2. These analyses also allow to compare molecular models to previously reported data to evaluate the robustness of our methods for quick prediction of emerging future variants. The docking results reveal that BA.4 and BF.7 have particularly strong interactions with ACE2 when compared to Omicron, as shown by several parameters such as salt bridge, hydrogen bond, and non-bonded interactions. In addition, the estimations of binding free energy corroborated the findings further. BA.4 and BF.7 were found to bind to ACE2 with similar affinities (-72.14 and - 71.54 kcal/mol, respectively) and slightly stronger than Omicron (-70.04 kcal/mol). The differences in the binding pattern between the Omicron, BA.4 and BF.7 variant complexes indicated that the BA.4 and BF.7 RBD substitutions Asp405Asn, Ser446Gly, Leu452Arg, Phe486Val and Arg493Gln caused additional interactions with ACE2. In addition, normal mode analyses also indicate more stable conformations of BA.4 and BF.7 RBDs against human ACE2. Based on these structural and simulation analyses, we hypothesized that these changes may affect the binding affinity of BA.4 and BF.7 with ACE2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , Pandemics , Research Design , Computer Simulation , Mutation , Protein Binding
12.
mSphere ; 8(2): e0060622, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36786611

ABSTRACT

Toxoplasma gondii is a widespread protozoan parasite that has a significant impact on human and veterinary health. The parasite undergoes a complex life cycle involving multiple hosts and developmental stages. How Toxoplasma transitions between life cycle stages is poorly understood yet central to controlling transmission. Of particular neglect are the factors that contribute to its sexual development, which takes place exclusively in feline intestines. While epigenetic repressors have been shown to play an important role in silencing the spurious gene expression of sexually committed parasites, the specific factors that recruit this generalized machinery to the appropriate genes remain largely unexplored. Here, we establish that a member of the AP2 transcription factor family, AP2XII-2, is targeted to genomic loci associated with sexually committed parasites along with epigenetic regulators of transcriptional silencing, HDAC3 and MORC. Despite its widespread association with gene promoters, AP2XII-2 is required for the silencing of relatively few genes. Using the CUT&Tag (cleavage under targets and tagmentation) methodology, we identify two major genes associated with sexual development downstream of AP2XII-2 control, AP2X-10 and the amino acid hydroxylase AAH1. Our findings show that AP2XII-2 is a key contributor to the gene regulatory pathways modulating Toxoplasma sexual development. IMPORTANCE Toxoplasma gondii is a parasite that undergoes its sexual stage exclusively in feline intestines, making cats a major source of transmission. A better understanding of the proteins controlling the parasite's life cycle stage transitions is needed for the development of new therapies aimed at treating toxoplasmosis and the transmission of the infection. Genes that regulate the sexual stages need to be turned on and off at the appropriate times, activities that are mediated by specific transcription factors that recruit general machinery to silence or activate gene expression. In this study, we identify a transcription factor called AP2XII-2 as being important for the repression of a subset of sexual stage genes, including a sexual stage-specific AP2 factor (AP2X-10) and a protein (AAH1) required to construct the infectious oocysts expelled from infected cats.


Subject(s)
Protozoan Proteins , Toxoplasma , Toxoplasmosis , Animals , Cats , Humans , Gene Expression , Life Cycle Stages/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Toxoplasmosis/parasitology , Transcription Factors/genetics
13.
J Biomol Struct Dyn ; 41(10): 4681-4695, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35532103

ABSTRACT

Two proinflammatory cytokines, IL17A and IL18, are observed to be elevated in the serum of gout patients and they play a crucial role in the development and worsening of inflammation, which has severe effects. In present study, we have combined molecular docking, molecular dynamics studies and MM-PBSA analysis to study the effectiveness of ethoxy phthalimide pyrazole derivatives (series 3a to 3e) as potential inhibitors against cytokines IL17A and IL18 as a druggable targets. The binding energy of the docked series ranges from -13.5 to -10.0 kcal/mol and extensively interacts with the amino acids in the active pocket of IL17A and IL18. Compound 3e had the lowest binding energy with IL17A at -12.6 kcal/mol compared to control allopurinol (3.32 kcal/mol). With IL18, compound 3a seems to have the lowest binding energy of -9.6 kcal/mol compared to control allopurinol (3.18 kcal/mol). In MD simulation studies, compound 3a forms a stable and energetically stabilized complex with the target protein. Depending on properties of the bound IL17A-3a and IL18-3a complexes was compared by means of MM-PBSA analysis. These derivatives can be used as a scaffold to develop promising IL17A and IL18 inhibitors to assess their potential for gouty arthritis and other related diseases. Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Arthritis, Gouty , Humans , Interleukin-18 , Arthritis, Gouty/drug therapy , Interleukin-17 , Allopurinol , Molecular Docking Simulation , Cytokines , Phthalimides/pharmacology , Pyrazoles/pharmacology , Molecular Dynamics Simulation
14.
Comput Biol Med ; 152: 106392, 2023 01.
Article in English | MEDLINE | ID: mdl-36502697

ABSTRACT

COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged first around December 2019 in the city of Wuhan, China. Since then, several variants of the virus have emerged with different biological properties. This pandemic has so far led to widespread infection cycles with millions of fatalities and infections globally. In the recent cycle, a new variant omicron and its three sub-variants BA.1, BA.2 and BA.3 have emerged which seems to evade host immune defences and have brisk infection rate. Particularly, BA.2 variant has shown high transmission rate over BA.1 strain in different countries including India. In the present study, we have evaluated a set of eighty drugs/compounds using in silico docking calculations in omicron and its variants. These molecules were reported previously against SARS-CoV-2. Our docking and simulation analyses suggest differences in affinity of these compounds in omicron and BA.2 compared to SARS-CoV-2. These studies show that neohesperidin, a natural flavonoid found in Citrus aurantium makes a stable interaction with spike receptor domain of omicron and BA.2 compared to other variants. Free energy binding analyses further validates that neohesperidin forms a stable complex with spike RBD in omicron and BA.2 with a binding energy of -237.9 ± 18.7 kJ/mol and -164.1 ± 17.5 kJ/mol respectively. Key residual differences in the RBD interface of these variants form the basis for differential interaction affinities with neohesperidin as drug binding site overlaps with RBD-human ACE2 interface. These data might be useful for the design and development of novel scaffolds and pharmacophores to develop specific therapeutic strategies against these novel variants.


Subject(s)
COVID-19 , Hesperidin , Humans , SARS-CoV-2 , Computer Simulation
15.
Int J Clin Pediatr Dent ; 16(5): 740-744, 2023.
Article in English | MEDLINE | ID: mdl-38162242

ABSTRACT

Background and aim: To evaluate the association between severe early childhood caries (S-ECC), dietary preferences, and 2nd digit-4th digit (2D:4D) ratio. The objective is to contrast the detection and prevalence of dental caries in children with different sensitivity levels to the bitter taste of 6-n-propylthiouracil (PROP) and its association with 2D:4D. Materials and methods: A total of 300 children below 71 months of age were assigned to two study groups-group I (caries-free) and group II (caries). PROP sensitivity test was carried out to determine the inherent genetic ability to taste a bitter or sweet substance. Evaluation of dietary preferences was carried out using a food preference questionnaire, which was completed by the parents of the children to know the child's dietary habits and their sweet, sour, and strong taste preferences. The length of the index (2D) and ring (4D) finger was measured with the help of digital vernier caliper to record the 2D:4D ratio. The data obtained was subjected to statistical analysis using Pearson's Chi-squared test and one-way analysis of variance (ANOVA). Results: The results suggested a positive association between S-ECC and dietary preferences but could not establish a straightforward 1:1 relation between 2D:4D ratio and S-ECC. Conclusion: An individual considered as nontaster by PROP test was a sweet liker with low 2D:4D ratio having high caries index. The association between 2D:4D ratio and S-ECC should further be explored by taking other influencing factors into consideration before arriving at a definitive conclusion. How to cite this article: Srivastava SK, Garg N, Pathivada L, et al. Association between Severe Early Childhood Caries, Dietary Preferences, and 2nd Digit-4th Digit (2D:4D) Ratio. Int J Clin Pediatr Dent 2023;16(5):740-744.

16.
Front Pharmacol ; 13: 894535, 2022.
Article in English | MEDLINE | ID: mdl-36160379

ABSTRACT

Despite recent improvements in multiple myeloma (MM) treatment, MM remains an incurable disease and most patients experience a relapse. The major reason for myeloma recurrence is the persistent stem cell-like population. It has been demonstrated that overexpression of Bruton's tyrosine kinase (BTK) in MM stem cell-like cells is correlated with drug resistance and poor prognosis. We have developed a novel small BTK inhibitor, KS151, which is unique compared to other BTK inhibitors. Unlike ibrutinib, and the other BTK inhibitors such as acalabrutinib, orelabrutinib, and zanubrutinib that covalently bind to the C481 residue in the BTK kinase domain, KS151 can inhibit BTK activities without binding to C481. This feature of KS151 is important because C481 becomes mutated in many patients and causes drug resistance. We demonstrated that KS151 inhibits in vitro BTK kinase activities and is more potent than ibrutinib. Furthermore, by performing a semi-quantitative, sandwich-based array for 71-tyrosine kinase phosphorylation, we found that KS151 specifically inhibits BTK. Our western blotting data showed that KS151 inhibits BTK signaling pathways and is effective against bortezomib-resistant cells as well as MM stem cell-like cells. Moreover, KS151 potentiates the apoptotic response of bortezomib, lenalidomide, and panobinostat in both MM and stem cell-like cells. Interestingly, KS151 inhibits stemness markers and is efficient in inhibiting Nanog and Gli1 stemness markers even when MM cells were co-cultured with bone marrow stromal cells (BMSCs). Overall, our results show that we have developed a novel BTK inhibitor effective against the stem cell-like population, and potentiates the response of chemotherapeutic agents.

17.
J Immunotoxicol ; 19(1): 61-73, 2022 12.
Article in English | MEDLINE | ID: mdl-35901199

ABSTRACT

Nickel titanium (NiTi, or Nitinol) alloy is used in several biomedical applications, including cardiac, peripheral vascular, and fallopian tube stents. There are significant biocompatibility issues of metallic implants to nickel ions and nano-/micro-sized alloy particles. Our laboratories have recently shown that microscale CoCr wear particles from metal-on-metal hips crosslink with the innate immune signaling Toll-like receptor 4 (TLR4), prompting downstream signaling that results in interleukin (IL)-1ß and IL-8 gene expression. In vivo, NiTi alloy can also generate wear particles on the nanoscale (NP) that have thus far not been studied for their potential to induce inflammation and angiogenesis that can, in turn, contribute to implant (e.g. stent) failure. Earlier studies by others demonstrated that nickel could induce contact hypersensitivity by crosslinking the human, but not the mouse, TLR4. In the present work, it is demonstrated that NiCl2 ions and NiTi nanoparticles induce pro-inflammatory and pro-angiogenic cytokine/chemokine expression in human endothelial and monocyte cell lines in vitro. These observations prompt concerns about potential mechanisms for stent failure. The data here showed a direct correlation between intracellular uptake of Ni2+ and generation of reactive oxygen species. To determine a role for nickel and NiTi nanoparticles in inducing angiogenesis in vivo, 1-cm silicone angioreactors were implanted subcutaneously into athymic (T-cell-deficient) nude mice. The angioreactors contained Matrigel (a gelatinous protein mixture that resembles extracellular matrix) in addition to one of the following: PBS (negative control), VEGF/FGF-2 (positive control), NiCl2, or NiTi NP. The implantation of angioreactors represents a potential tool for quantification of angiogenic potentials of medical device-derived particles and ions in vivo. By this approach, NiTi NP were found to be markedly angiogenic, while Ni2+ was less-so. The angioreactors may provide a powerful tool to examine if debris shed from medical devices may promote untoward biological effects.


Subject(s)
Metal Nanoparticles , Nickel , Alloys , Animals , Humans , Inflammation , Ions , Mice , Mice, Nude , Nanoparticles , Nickel/pharmacology , Titanium/adverse effects , Toll-Like Receptor 4
18.
Int J Biol Macromol ; 203: 593-600, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35120937

ABSTRACT

Ammonia dependent NAD+ synthetase from multi drug resistance Staphylococcus aureus catalyzes ATP dependent formation of NAD+ from deamido-NAD+ and ammonia at the synthetase active site. Binding of ATP accompanies a large movement of flexible loop region (205-225) acting as a lid to the catalytic core. A 17 Å long ammonia tunnel with an entry and exit radius of 3.5 Å and 3.2 Å respectively allows transfer of ammonia from surface to the active site of the enzyme in each monomer to attack the C7N=O7N linkage of transient intermediate NAD-adenylate thus releasing NAD+. In this study, we report structural details of ammonia transport tunnel in Staphylococcus aureus NH3-dependent NAD synthetase and compared their architecture and dynamics with other bacterial and eukaryotic enzymes. Tunnel shows conformational variations in apo and substrate complexes and is less intricate compared to glutamine dependent counterparts. We have also performed steered molecular dynamic simulations of ammonia transport across the tunnel in enzyme-intermediate complex which reveals critical bottleneck residues and structural determinants during ammonium migration. Ordered water molecules and conserved charged residues form a network of hydrogen bonds and electrostatic interaction which facilitate the ammonium movement towards the active center. Analysis of the sMD simulated structural snapshots delineates the conformational reshaping of ammonia tunnel at the different step of the enzymatic reaction. Tunnel architecture and environment could offer the new target site to design novel small molecule inhibitors for the development of more efficient therapeutics against multi drug resistant S. aureus strains.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Molecular Dynamics Simulation , Amide Synthases , Ammonia/chemistry , Crystallography, X-Ray , Methicillin-Resistant Staphylococcus aureus/metabolism , NAD/metabolism , Staphylococcus aureus/metabolism
19.
J Healthc Eng ; 2022: 2345600, 2022.
Article in English | MEDLINE | ID: mdl-35154617

ABSTRACT

This article examines distinctive techniques for monitoring the condition of fishes in underwater and also provides tranquil procedures after catching the fishes. Once the fishes are hooked, two different techniques that are explicitly designed for smoking and drying are implemented for saving the time of fish suppliers. Existing methods do not focus on the optimization algorithms for solving this issue. When considering the optimization problem, the solution is adequate for any number of inputs at time t. For this combined new flanged technique, a precise system model has been designed and incorporated with a set of rules using contention protocols. In addition, the designed system is also instigated with a whale optimization algorithm that is having sufficient capability to test the different parameters of assimilated sensing devices using different sensors. Further to test the effectiveness of the proposed method, an online monitoring system has been presented that can monitor and in turn provides the consequences using a simulation model for better understanding. Moreover, after examining the simulation results under three different scenarios, it has been observed that the proposed method provides an enhancement in real-time monitoring systems for an average of 78%.


Subject(s)
Algorithms , Whales , Animals , Computer Systems , Fishes , Humans
20.
F1000Res ; 11: 1038, 2022.
Article in English | MEDLINE | ID: mdl-38317804

ABSTRACT

Background: The ravages of COVID-19 escalated the penetration of online education and usage of digital technologies. While educational institutions across the globe adopted different forms of computer-mediated communication, the institutes in India have gradually attuned to the new normal, notwithstanding the initial glitches of adopting new technology and shifting to blended. It became increasingly significant to gain a better understanding of students' perspectives of newly emerged learning environment. This motivated the researchers to study the digital competencies (DC) and their impact on students' learning agility (LA) and perceived learning (PL) in professional/technical education. Methods: In this cross-sectional study, a DigiComp 2.1 framework was attempted to investigate the relationship between DC and PL among higher education students in India. The data from 359 graduate and post-graduate students were analyzed using Structural equation modelling and Process Macro 4.0. Results: The findings of this study revealed that DC has a significant positive impact on PL (b = 0.33; p < 0.001), indicating that higher learners' DC leads to higher learning outcomes. Similarly, DC also had a significant positive impact on LA (b = 0.59; p < 0.001), suggesting that the higher DC of learners leads to higher learning agility. Further, a positive significant relationship was also found between LA and PL (b = 0.21; p < 0.001). This significant positive path reveals that higher learners' agility leads to higher student learning outcomes. Discussion: Post-COVID, DC, a technology-related skill set is linked to the academic performance of teachers and students. Our findings reveal that DC significantly positively impacts PL and LA. Therefore, we recommend that the higher educational institutes in India consider the inclusion of DC in their curriculum as a fundamental competence for a better learning outcome for learners.


Subject(s)
Learning , Students , Humans , Cross-Sectional Studies , Curriculum , Communication
SELECTION OF CITATIONS
SEARCH DETAIL
...