Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 31(12): 124003, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30641510

ABSTRACT

The hole and electron extracting interlayers in the organic solar cells (OSCs) play an important role in high performing devices. The present work focuses on an investigation of Zinc oxide/bulk heterojunction (ZnO/BHJ) and BHJ/MoO x (Molybdenum oxide) buried planar interfaces in inverted OSC devices using the optical contrast in various layers along with the electrical measurements. The x-ray reflectivity (XRR) analysis demonstrates the formation of additional intermixing layers at the interfaces of ZnO/BHJ and BHJ/MoO x . Our results indicate infusion of PC71BM into ZnO layer up to ~4 nm which smoothen the ZnO/BHJ interface. In contrast, thermally evaporated MoO x molecules diffuse into PTB7-Th dominant upper layers of BHJ active layer resulting in an intermixed layer at the interface of MoO x /BHJ. The high recombination resistance (~5 kΩ cm2) and electron lifetime (~70 µs), obtained from the impedance spectroscopy (IS), support such vertical segregation of PTB7-Th and PC71BM in the active layer. The OSC devices, processed in ambient condition, exhibit high power conversion efficiency of 6.4%. We consider our results have great significance to understand the structure of buried planar interfaces at interlayers and their correlation with the electrical parameters representing various interfacial mechanisms of OSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...