Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Clin Med ; 12(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36769553

ABSTRACT

Dose-calculation algorithms are critical for radiation treatment outcomes that vary among treatment planning systems (TPS). Modern algorithms use sophisticated radiation transport calculation with detailed three-dimensional beam modeling to provide accurate doses, especially in heterogeneous medium and small fields used in IMRT/SBRT. While the dosimetric accuracy in heterogeneous mediums (lung) is qualitatively known, the accuracy is unknown. The aim of this work is to analyze the calculated dose in lung patients and compare the validity of dose-calculation algorithms by measurements in a low-Z phantom for two main classes of algorithms: type A (pencil beam) and type B (collapse cone). The CT scans with volumes (target and organs at risk, OARs) of a lung patient and a phantom build to replicate the human lung data were sent to nine institutions for planning. Doses at different depths and field sizes were measured in the phantom with and without inhomogeneity correction across multiple institutions to understand the impact of clinically used dose algorithms. Wide dosimetric variations were observed in target and OAR coverage in patient plans. The correction factor for collapsed cone algorithms was less than pencil beam algorithms in the small fields used in SBRT. The pencil beam showed ≈70% variations between measured and calculated correction factors for various field sizes and depths. For large field sizes the trends of both types of algorithms were similar. The differences in measured versus calculated dose for type-B algorithms were within ±10%. Significant variations in the target and OARs were observed among various TPS. The results suggest that the pencil beam algorithm does not provide an accurate dose and should not be considered with small fields (IMRT/SBRT). Type-B collapsed-cone algorithms provide better agreement with measurements, but still vary among various systems.

2.
J Appl Clin Med Phys ; 24(3): e13857, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36519493

ABSTRACT

This study provides insight into the overall system performance, stability, and delivery accuracy of the first clinical self-shielded stereotactic radiosurgery (SRS) system. Quality assurance procedures specifically developed for this unit are discussed, and trends and variations over the course of 2-years for beam constancy, targeting and dose delivery are presented. Absolute dose calibration for this 2.7 MV unit is performed to deliver 1 cGy/MU at dmax  = 7 mm at a source-to-axis-distance (SAD) of 450 mm for a 25 mm collimator. Output measurements were made with 2-setups: a device that attaches to a fixed position on the couch (daily) and a spherical phantom that attaches to the collimating wheel (monthly). Beam energy was measured using a cylindrical acrylic phantom at depths of 100 (D10 ) and 200 (D20 ) mm. Beam profiles were evaluated using Gafchromic film and compared with TPS beam data. Accuracy in beam targeting was quantified with the Winston-Lutz (WL) and end-to-end (E2E) tests. Delivery quality assurance (DQA) was performed prior to clinical treatments using Gafchromic EBT3/XD film. Net cumulative output adjustments of 15% (pre-clinical), 9% (1st year) and 3% (2nd year) were made. The mean output was 0.997 ± 0.010 cGy/MU (range: 0.960-1.046 cGy/MU) and 0.993 ± 0.029 cGy/MU (range: 0.884-1.065 cGy/MU) for measurements with the daily and monthly setups, respectively. The mean relative beam energy (D10 /D20 ) was 0.998 ± 0.004 (range: 0.991-1.006). The mean total targeting error was 0.46 ± 0.17 mm (range: 0.06-0.98 mm) for the WL and 0.52 ± 0.28 mm (range: 0.11-1.27 mm) for the E2E tests. The average gamma pass rates for DQA measurements were 99.0% and 90.5% for 2%/2 mm and 2%/1 mm gamma criteria, respectively. This SRS unit meets tolerance limits recommended by TG-135, MPPG 9a., and TG-142 with a treatment delivery accuracy similar to what is achieved by other SRS systems.


Subject(s)
Radiosurgery , Humans , Radiosurgery/methods , Radiotherapy Dosage , Particle Accelerators , Phantoms, Imaging , Calibration , Radiotherapy Planning, Computer-Assisted/methods
3.
Med Phys ; 49(12): 7733-7741, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35964159

ABSTRACT

BACKGROUND: Methods for accurate absolute dose (AD) calibration are essential for the proper functioning of radiotherapy treatment machines. Many systems do not conform to TG-51 calibration standards, and modifications are required. TG-21 calibration is also a viable methodology for these situations with the appropriate setup, equipment, and factors. It has been shown that both these methods result in minimal errors. A similar approach has been taken in calibrating the dose for a recent vault-free radiosurgery system. PURPOSE: To evaluate modified TG-21 and TG-51 protocols for AD calibrations of the ZAP-X radiosurgery system using ion chambers, film, and thermoluminescent dosimeters (TLDs). METHODS: The current treatment planning system for ZAP-X requires AD calibration at dmax (7 mm) and 450 mm source-to-axis distance. Both N D , w 60 C o [ G y / C ] $N_{D,w}^{{60}Co}[ {Gy/C} ]$ and Nx [R/C] calibration coefficients were provided by an accredited dosimetry calibration laboratory for a physikalisch technische werkstatten (PTW) 31010 chamber (0.125 cc). The vendor provides an f-bracket that can be mounted on the collimator. Various phantoms can then be attached to the f-bracket. A custom acrylic phantom was designed based on recommendations from TG-21 and technical report series-398 that places the chamber at 500 mm from the source with a depth of 44-mm acrylic and 456-mm SSD. Nx along with other TG-21 parameters was used to calculate the AD. Measurements using a PTW MP3-XS water tank and the same chamber were used to calculate AD using N D , w 60 C o $N_{D,w}^{{60}Co}$ and TG-51 factors. Dose verification was performed using Gafchromic film and 3rd party TLDs. RESULTS: Measurements from TG-51, TG-21 (utilizing the custom acrylic phantom), film, and TLDs agreed to within ± 2%. CONCLUSIONS: A modified TG-51 AD calculation in water is preferred but may not be practical due to the difficulty in tank setup. The TG-21 modified protocol using a custom acrylic phantom is an accurate alternative option for dose calibration. Both of these methods are within acceptable agreement and provide confidence in the system's AD calibration.


Subject(s)
Phenylpropionates , Radiosurgery , Radiosurgery/methods , Radiometry , Phantoms, Imaging , Calibration , Water
4.
Technol Cancer Res Treat ; 21: 15330338221106852, 2022.
Article in English | MEDLINE | ID: mdl-35712977

ABSTRACT

Introduction: Brachytherapy using permanently implantable collagen tiles containing cesium-131 (Cs-131) is indicated for treatment of malignant intracranial neoplasms. We quantified Cs-131 source migration and modeled the resulting dosimetric impact for Cs-131, iodine-125 (I-125), and palladium-103 (Pd-103). Methods and Materials: This was a retrospective analysis of a subgroup of patients enrolled in a prospective, single-center, nonrandomized, clinical trial (NCT03088579) of Cs-131 collagen tile brachytherapy. Postimplant Cs-131 plans and hypothetical I-125 and Pd-103 calculations were compared for 20 glioblastoma patients for a set seed geometry. Dosimetric impact of decay and seed migration was calculated for 2 hypothetical scenarios: Scenario 1, assuming seed positions on a given image set were unchanged until acquisition of the subsequent set; Scenario 2, assuming any change in seed positions occurred the day following acquisition of the prior images. Seed migration over time was quantified for a subset of 7 patients who underwent subsequent image-guided radiotherapy. Results: Mean seed migration was 1.7 mm (range: 0.7-3.1); maximum seed migration was 4.3 mm. Mean dose to the 60 Gy volume differed by 0.4 Gy (0.6%, range 0.1-1.0) and 0.9 Gy (1.5%, range 0.2-1.7) for Cs-131, 1.2 Gy (2.0%, range 0.1-2.1) and 1.6 Gy (2.6%, range 1.2-2.6) for I-125, and 0.8 Gy (1.3%, range 0.2-1.5) and 1.4 Gy (2.3%, range 0.3-1.9) for Pd-103, for Scenarios 1 and 2, respectively, compared with the postimplant plan. For a set seed geometry mean implant dose was higher for Pd-103 (1.3 times) and I-125 (1.1 times) versus Cs-131. Dose fall-off was steepest for Pd-103: gradient index 1.88 versus 2.23 (I-125) and 2.40 (Cs-131). Conclusions: Dose differences due to source migration were relatively small, suggesting robust prevention of seed migration from Cs-131-containing collagen tiles. Intratarget heterogeneity was greater with Pd-103 and I-125 than Cs-131. Dose fall-off was fastest with Pd-103 followed by I-125 and then Cs-131.


Subject(s)
Brachytherapy , Brain Neoplasms , Brachytherapy/methods , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Cesium Radioisotopes/therapeutic use , Humans , Iodine Radioisotopes/therapeutic use , Palladium/therapeutic use , Prospective Studies , Radioisotopes , Radiotherapy Dosage , Retrospective Studies
6.
Med Phys ; 48(11): 6881-6888, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34628668

ABSTRACT

PURPOSE: Magnetic resonance imaging (MRI) is commonly used in treatment planning for stereotactic radiosurgery (SRS) of trigeminal neuralgia (TN). With current MRI techniques, the delineation of the trigeminal nerve root entry zone (REZ) may be degraded due to poor contrast and artifacts. The purpose of this work is to develop an MRI technique with better delineation of the trigeminal nerve REZ to improve SRS treatment planning for TN. METHODS: A spiral fluid-attenuated inversion recovery (FLAIR) MRI technique was developed to improve image quality by improving tissue contrast, fluid suppression, artifact reduction, and signal-to-noise ratio (SNR). A concomitant-phase compensation method based on spiral gradient waveforms was implemented to minimize artifacts due to magnetic field change induced by the metal frame used in Gamma Knife treatment planning. The image quality of spiral FLAIR was assessed in four healthy volunteers. The geometric accuracy was quantitatively evaluated by registering spiral FLAIR to computed tomography (CT) images and comparing it with existing MRI techniques. RESULTS: The spiral FLAIR technique demonstrated better delineation of the trigeminal nerve REZ, improved tissue contrast of the brain stem, and minimized flow artifacts, compared to steady-state free precession (SSFP) MRI. Spiral FLAIR also improved fluid suppression, SNR, and artifacts, which contributed to better delineation of the trigeminal nerve REZ compared to conventional Cartesian FLAIR. The measured mean (± standard deviation) distance between spiral FLAIR and CT images is 0.98 ± 0.56 mm, comparable to 0.40 ± 0.26 mm in 3T T1 spoiled gradient echo (T1-SPGR), 0.59 ± 0.25 mm in 3T SSFP, 0.66 ± 0.38 mm in 1.5T T1-SPGR, and 0.61 ± 0.25 mm in 1.5T Cartesian FLAIR. CONCLUSION: A spiral FLAIR technique with improved image quality and good geometric accuracy provides a potential alternative for treatment planning in SRS for TN patients.


Subject(s)
Radiosurgery , Trigeminal Neuralgia , Artifacts , Humans , Magnetic Resonance Imaging , Trigeminal Nerve/diagnostic imaging , Trigeminal Nerve/surgery , Trigeminal Neuralgia/diagnostic imaging , Trigeminal Neuralgia/radiotherapy , Trigeminal Neuralgia/surgery
7.
Med Phys ; 48(10): 6121-6136, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34260069

ABSTRACT

PURPOSE: This study reports a single-institution experience with beam data acquisition and film-based validation for a novel self-shielded sterotactic radiosurgery unit and investigates detector dependency on field output factors (OFs), off-axis ratios (OARs), and percent depth dose (PDD) measurements within the context of small-field dosimetry. METHODS: The delivery platform for this unit consists of a 2.7-MV S-band linear accelerator mounted on coupled gimbals that rotate around a common isocenter (source-to-axis distance [SAD] = 450 mm), allowing for more than 260 noncoplanar beam angles. Beam collimation is achieved via a tungsten collimator wheel with eight circular apertures ranging from 4 mm to 25 mm in diameter. Three diodes (PTW 60012 Diode E, PTW 60018 SRS Diode, and Sun Nuclear EDGE) and a synthetic diamond detector (PTW 60019 micro Diamond [µD] detector) were used for OAR, PDD, and OF measurements. OFs were also acquired with a PTW 31022 PinPoint ionization chamber. Beam scanning was performed using a 3D water tank at depths of 7, 50, 100, 200, and 250 mm with a source-to-surface distance of 450 mm. OFs were measured at the depth of maximum dose (dmax  = 7 mm) with the SAD at 450 mm. Gafchromic EBT3 film was used to validate OF and profile measurements and as a reference detector for estimating correction factors for active detector OFs. Deviations in field size, penumbra, and PDDs across the different detectors were quantified. RESULTS: Relative OFs (ROFs) for the diodes were within 1.4% for all collimators except for 5 and 7.5 mm, for which SRS Diode measurements were higher by 1.6% and 2.6% versus Diode E. The µD ROFs were within 1.4% of the diode measurements. PinPoint ROFs were lower by >10% for the 4-mm and 5-mm collimators versus the Diode E and µD. Corrections to OFs using EBT3 film as a reference were within 1.2% for all diodes and the µD detector for collimators 10 mm and greater and within 2.0%, 2.8%, and 1.1% for the 7.5-, 5-, and 4-mm collimators, respectively. The maximum difference in full width at half maximum (FWHM) between the Diode E and the other active detectors was for the 25-mm collimator and was 0.09 mm (µD), 0.16 mm (SRS Diode), and 0.65 mm (EDGE). Differences seen in PDDs beyond the depth of dmax were <1% across the three diodes and the µD. FWHM and penumbra measurements made using EBT3 film were within 1.34% and 3.26%, respectively, of the processed profile data entered into the treatment planning system. CONCLUSIONS: Minimal differences were seen in OAR and PDD measurements acquired with the diodes and the µD. ROFs measured with the three diodes were within 2.6% and within 1.4% versus the µD. Gafchromic Film measurements provided independent verification of the OAR and OF measurements. Estimated corrections to OFs using film as a reference were <1.6% for the Diode E, EDGE, and µD detector.


Subject(s)
Radiosurgery , Diamond , Monte Carlo Method , Particle Accelerators , Radiometry
8.
Med Phys ; 48(5): 2494-2510, 2021 May.
Article in English | MEDLINE | ID: mdl-33506520

ABSTRACT

PURPOSE: To evaluate the treatment planning system (TPS) performance of the ZAP-X stereotactic radiosurgery (SRS) system through nondosimetric, dosimetric, and end-to-end (E2E) tests. METHODS: A comprehensive set of TPS commissioning and validation tests was developed using published guidelines. Nondosimetric validation tests included information transfer, computed tomography-magnetic resonance (CT-MR) image registration, structure/contouring, geometry, dose tools, and CT density. Dosimetric validation included comparisons between TPS and water tank/Solid Water measurements for various geometries and beam arrangements and end-to-end (E2E) tests. Patient-specific quality assurance was performed with an ion chamber in the Lucy phantom and with Gafchromic EBT3 film in the CyberKnife head phantom. RadCalc was used for independent verification of monitor units. Additional E2E tests were performed using the RPC Gamma Knife thermoluminescent dosimeter (TLD) phantom, MD Anderson SRS head phantom, and PseudoPatient gel phantom for independent absolute dose verification. RESULTS: CT-MR image registrations with known translational and rotational offsets were within tolerance (<0.5 × maximum voxel dimension). Slice thickness and distance accuracy were within 0.1 mm, and volume accuracy was within 0 to 0.11 cm3 . Treatment planning system volume measurement uncertainty was within 0.1 to 0.4 cm3 . Ion chamber point-dose measurements for a single beam in a water phantom agreed to TPS-calculated values within ±4% for collimator diameters 10 to 25 mm, and ±6% for 7.5 mm, for all measured depths (7, 50, 100, 150, and 200 mm). In homogeneous Solid Water, point-dose measurements agreed to within ±4% for cones sizes 7.5 to 25 mm. With 1-cm high/low density inserts, measurements were within ±4.2% for cone sizes 10 to 25 mm. Film-based E2E using 4/5-mm cones resulted in a gamma passing rate (%GP) of 99.8% (2%/1.5 mm). Point-dose measurements in a Lucy phantom with an ion chamber using 36 beams distributed along three noncoplanar arcs agreed to within ±4% for cone sizes 10 to 25 mm. The RPC Gamma Knife TLD phantom yielded passing results with a measured-to-expected TLD dose ratio of 1.02. The MD Anderson SRS head phantom yielded passing results, with 4% TLD agreement and %GP of 95%/93% (5%/3 mm) for coronal/sagittal film planes. The RTsafe gel phantom gave %GP of >95% (5%/2 mm) for all four targets. For our first 58 patients, film-based patient-specific quality assurance has resulted in an average %GP of 98.7% (range, 94-100%) at 2%/2 mm. CONCLUSIONS: Core ZAP-X features were found to be functional. On the basis of our results, point-dose and planar measurements were in agreement with TPS calculations using multiple phantoms and setup geometries, validating the ZAP-X TPS beam model for clinical use.


Subject(s)
Radiosurgery , Radiotherapy, Intensity-Modulated , Head , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
9.
Pract Radiat Oncol ; 7(3): 209-217, 2017.
Article in English | MEDLINE | ID: mdl-27847266

ABSTRACT

PURPOSE: Small-volume structures usually found in the head and neck may be susceptible to dose-volume averaging, which has not been studied. Here, the impact of calculation grid size on dose distribution for tumor control probability (TCP) and normal tissue complication probability (NTCP) is investigated for head and neck (H&N) intensity modulated radiation therapy (IMRT). METHODS AND MATERIALS: IMRT plans were generated for H&N patients with different grid sizes (1-5 mm) to calculate dose and related TCP and NTCP. Dose parameters such as D2%, D50%, D98%, and the homogeneity and conformity indices were calculated. The dose distributions were also compared with measured dose for all IMRT plans. A 1-tailed pair t test was used to analyze the data. RESULTS: The mean dose to planning target volume and TCP decreases with increasing grid size, whereas for organs at risk (OARs), mean dose, and NTCP increase with increasing grid size. The average mean dose to planning target volume decreases linearly with grid size, but for OARs such as cochlea, parotid gland, and the spinal cord, mean dose increases with grid size. IMRT dose verification showed that the number of points meeting the gamma criterion of 3%/3 mm increased with decreasing grid sizes. The homogeneity index for the target increased up to 60% and conformity index decreased on average by 3.5% between 1- to 5-mm grid that resulted in decreased TCP and increased NTCP. A 1-tailed pair t test showed significant statistical differences among various grid size calculations compared with 1-mm grids. CONCLUSIONS: Based on our findings, the smallest possible grid size should be used for accurate dose calculation in small-volume structures-especially in H&N planning. A smaller calculation grid provides superior dosimetry with improved TCP as well as reduced NTCP, which is more pronounced for smaller OARs.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Head and Neck Neoplasms/diagnostic imaging , Humans
10.
Technol Cancer Res Treat ; 15(1): 107-13, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25432930

ABSTRACT

This study quantifies the setup uncertainties to optimize the planning target volume (PTV) margin based on daily image guidance, its dosimetric impact, and radiobiological implication for intensity-modulated radiation therapy (IMRT) in head and neck cancer. Ten patients were retrospectively chosen who had been treated with IMRT and with daily image-guided radiation therapy (IGRT). The daily setup errors of the 10 patients from on-board imaging for the entire treatment were analyzed. Planning target volumes were generated by expanding the clinical target volumes (CTVs) with 0 to 10 mm margins. The IMRT plans with the same dose-volume constraints were created in an Eclipse treatment planning system. The effect of volume expansion was analyzed with biological indices such as tumor control probability, normal tissue complication probability (NTCP), and equivalent uniform dose. Analysis of 906 daily setup corrections using daily IGRT showed that 98% of the daily setups are within ± 5 mm. The relative increase in PTV-CTV volume from 0 to 10 mm margins provides nearly 4-fold volume increase and is linearly related to monitor unit (MU). The increase in MU is about 5%/mm margin increase. The relative increase in NTCP of parotids from 5 to 10 mm margins is 3.2 ± 1.15. Increase in PTV margin increases extra tissue volume with a corresponding increase in MU for treatment and NTCP values. Even a small margin increase (eg, 1 mm) may result in increase of more than 20% in relative extra volume and 15% in NTCP value of organs at risk (OARs). With image guidance, the setup uncertainty could be achieved within ± 5 mm for 98% of the treatments, and a margin <5 mm for PTV may seem desirable to reduce the extra tissue irradiated, but at the expense of a more demanding setup accuracy.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Humans , Organ Sparing Treatments , Organs at Risk , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Retrospective Studies
11.
J Appl Clin Med Phys ; 14(1): 3993, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23318385

ABSTRACT

The use of rectal balloon in radiotherapy of prostate cancer is shown to be effective in reducing prostate motion and minimizing rectal volume, thus reducing rectal toxicity. Air-filled rectal balloon has been used most commonly, but creates dose perturbation at the air-tissue interface. In this study, we evaluate the effects of rectal balloon-filling materials on the dose distribution to the target and organs at risk. The dosimetric impact of rectal balloon filling was studied in detail for a typical prostate patient, and the general effect of the balloon filling was investigated from a study of ten prostate patients covering a wide range of anterior-posterior and left-right separations, as well as rectal and bladder volumes. Hounsfield units (HU) of the rectal balloon filling was changed from -1000 HU to 1000 HU at an interval of 250 HU, and the corresponding changes in the relative electron density (RED) was calculated. For each of the HU of the rectal balloon filling, a seven-field IMRT plan was generated with 6 MV and 15 MV photon beams, respectively. Dosimetric evaluation was performed with the AAA algorithm for inhomogeneity corrections. A detailed study of the rectal balloon filling shows that the GTV, PTV, rectal, and bladder mean dose decreased with increasing values of RED in the rectal balloon. There is significant underdosage in the target volume at the rectum-prostate interface with an air-filled balloon as compared to that with a water-filled balloon for both 6 MV and 15 MV beams. While the dosimetric effect of the rectal balloon filling is reduced when averaged over ten patients, generally an air-filled balloon results in lower minimum dose and lower mean dose in the overlap region (and possibly the PTV) compared to those produced by water-filled or contrast-filled balloons. Dose inhomogeneity in the target volume is increased with an air-filled rectal balloon. Thus a water-filled or contrast-filled rectal balloon is preferred to an air-filled rectal balloon in EBRT of prostate treatment.


Subject(s)
Artifacts , Catheters , Organs at Risk/radiation effects , Prostatic Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy, Conformal/methods , Rectum , Humans , Male , Photons/therapeutic use , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
12.
Acta Oncol ; 52(3): 553-60, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22554342

ABSTRACT

PURPOSE: To investigate the moving gap region dosimetry in proton beam cranio-spinal irradiation (CSI) to provide optimal dose uniformity across the treatment volume. MATERIAL AND METHODS: Proton beams of ranges 11.6 cm and 16 cm are used for the spine and the brain fields, respectively. Beam profiles for a 30 cm snout are first matched at the 50% level (hot match) on the computer. Feathering is simulated by shifting the dose profiles by a known distance two successive times to simulate a 2 × feathering scheme. The process is repeated for 2 mm and 4 mm gaps. Similar procedures are used to determine the dose profiles in the moving gap for a series of gap widths, 0-10 mm, and feathering step sizes, 4-10 mm, for a Varian iX 6MV beam. The proton and photon dose profiles in the moving gap region are compared. RESULTS: The dose profiles in the moving gap exhibit valleys and peaks in both proton and photon beam CSI. The dose in the moving gap for protons is around 100% or higher for 0 mm gap, for both 5 and 10 mm feathering step sizes. When the field gap is comparable or larger than the penumbra, dose minima as low as 66% is obtained. The dosimetric characteristics for 6 MV photon beams can be made similar to those of the protons by appropriately combining gap width and feathering step size. CONCLUSION: The dose in the moving gap region is determined by the lateral penumbras, the width of the gap and the feathering step size. The dose decreases with increasing gap width or decreasing feathering step size. The dosimetric characteristics are similar for photon and proton beams. However, proton CSI has virtually no exit dose and is beneficial for pediatric patients, whereas with photon beams the whole lung and abdomen receive non-negligible exit dose.


Subject(s)
Craniospinal Irradiation/methods , Photons/therapeutic use , Proton Therapy , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted , Brain/pathology , Brain/physiology , Child , Craniospinal Irradiation/adverse effects , Dose-Response Relationship, Radiation , Humans , Motion , Organs at Risk/pathology , Proton Therapy/adverse effects , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Spine/pathology , Spine/physiology , Thorax/pathology
13.
Med Dosim ; 37(2): 138-9, 2012.
Article in English | MEDLINE | ID: mdl-21925862

ABSTRACT

Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d(max.), 10 × 10 cm(2), 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4-40.6°C (85-105°F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.


Subject(s)
Film Dosimetry/instrumentation , Film Dosimetry/standards , Temperature
14.
Med Dosim ; 36(3): 313-6, 2011.
Article in English | MEDLINE | ID: mdl-20817436

ABSTRACT

Dosimetric comparison of manual beam angle selection (MBS) and beam angle optimization (BAO) for IMRT plans is investigated retrospectively for 15 head and neck and prostate patients. The head and neck and prostate had planning target volumes (PTVs) ranging between 96.0 and 319.9 cm(3) and 153.6 and 321.3 cm(3), whereas OAR ranged between 8.3 and 47.8 cm(3) and 68.3 and 469.2 cm(3), respectively. In MBS, a standard coplanar 7-9 fields equally spaced gantry angles were used. In BAO, the selection of gantry angle was optimized by the algorithm for the same number of beams. The optimization and dose-volume constraints were kept the same for both techniques. Treatment planning was performed on the Eclipse treatment planning system. Our results showed that the dose-volume histogram for PTV are nearly identical in both techniques but BAO provided superior sparing of the organs at risk compared with the MBS. Also, MBS produced statistically significant higher monitor units (MU) and segments than the BAO; 13.1 ± 6.6% (p = 0.012) and 10.4 ± 13.6% (p = 0.140), and 14.6 ± 5.6% (p = 1.003E-5) and 12.6 ± 7.4% (p = 0.76E-3) for head and neck and prostate cases, respectively. The reduction in MU translates into the reduction in total body and integral dose. It is concluded that BAO provides advantage over MBS for most intenisty-modulated radiation therapy cases.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Male , Radiotherapy Dosage , Retrospective Studies
15.
Med Dosim ; 36(1): 6-9, 2011.
Article in English | MEDLINE | ID: mdl-19944592

ABSTRACT

Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within ± 1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 ± 6.3%) and higher MU (13.7 ± 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.


Subject(s)
Algorithms , Head and Neck Neoplasms/radiotherapy , Models, Biological , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/instrumentation , Radiotherapy, Conformal/methods , Computer Simulation , Equipment Design , Equipment Failure Analysis , Humans , Radiotherapy Dosage
16.
J Natl Cancer Inst ; 100(5): 300-7, 2008 Mar 05.
Article in English | MEDLINE | ID: mdl-18314476

ABSTRACT

BACKGROUND: Intensity-modulated radiation therapy (IMRT) is a widely accepted method for radiation treatment to provide a prescribed and uniform dose to the target volume and a minimum dose to normal tissues that is dependent on the IMRT software and the treatment machine. We examined the variation in IMRT dose prescription, treatment planning, dose recording, and dose delivery among cancer patients who were treated with different treatment planning systems at different medical institutions to assess variability in patient care. METHODS: We conducted a retrospective analysis of 803 patients who were treated with IMRT between October 2004 and July 2006 for brain, head and neck, or prostate cancer at five medical institutions that used different treatment planning systems. The prescribed dose to the target volume, as recorded in the chart or as noted in the electronic data management system, was extracted for each patient. The planned dose that was delivered to the patient, as represented in the dose-volume histogram, was acquired from each treatment planning system. The actual minimum, maximum, median, and isocenter doses to the target volume were normalized to the prescribed dose and analyzed for each disease site and institution. RESULTS: Of the 803 patients, 12% were treated for brain cancer, 26% for head and neck cancer, and 62% for prostate cancer. The recorded dose variability from prescription was widespread for the minimum, maximum, and isocenter doses. A total of 46% of the patients received a maximum dose that was more than 10% higher than the prescribed dose, and 63% of the patients received a dose that was more than 10% lower than the prescribed dose. At all five institutions, the prostate cancer cases had the smallest dosimetric variation and the head and neck cancer cases had the largest variation. The median dose to the target varied from the prescribed dose by +/-2% in 68% of the patients, by +/-5% in 88% of the patients, and by +/-10% in 96% of the patients. The recorded isocenter dose varied from prescription for all disease sites and treatment planning systems. CONCLUSIONS: Substantial variation in the prescribed and delivered doses exists among medical institutions, raising concerns about the validity of comparing clinical outcomes for IMRT. The isocenter dose in IMRT is simply a point dose and often does not reflect the prescription dose that is specified by a selected isodose line encompassing the target volume. This study suggests the need for national and/or international guidelines for dose prescription, planning, and reporting for a meaningful clinical trial in IMRT.


Subject(s)
Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Computer-Assisted , Radiotherapy, Intensity-Modulated , Adult , Aged , Algorithms , Brain Neoplasms/radiotherapy , Cancer Care Facilities , Female , Head and Neck Neoplasms/radiotherapy , Humans , Indiana , Louisiana , Male , Middle Aged , New Jersey , Philadelphia , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Research Design , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...