Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 120(6): 1455-1464, 2023 06.
Article in English | MEDLINE | ID: mdl-36919889

ABSTRACT

In plant microbial fuel cells (p-MFCs) electrochemically active microbes present around the plant root convert rhizodeposits or the organic matter into electrons, protons, and CO2 . This work covers the increasing trend in research with p-MFCs with their mechanism of operation. Different plant species and their selection criteria are also covered. Furthermore, the long-term evaluation of such systems with its cost effectiveness and commercial and environmental perspectives are also presented. A critical aspect for bioelectricity production is the photosynthetic pathway of the plant. Additionally, the microbial communities and reactor configurations employed across different capacities are also reviewed. The challenges with bioelectricity production and the opportunity for developing p-MFCs in conjunction with traditional MFCs are also covered. These electrogenic reactor systems harness bioelectricity without harvesting the plant and has the capacity to utilize this energy for remote power applications.


Subject(s)
Bioelectric Energy Sources , Electrodes , Photosynthesis , Renewable Energy , Technology , Plants , Electricity
2.
Dev Cell ; 41(4): 392-407.e6, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28535374

ABSTRACT

Mesodermal cells signal to neighboring epithelial cells to modulate their proliferation in both normal and disease states. We adapted a Caenorhabditis elegans organogenesis model to enable a genome-wide mesodermal-specific RNAi screen and discovered 39 factors in mesodermal cells that suppress the proliferation of adjacent Ras pathway-sensitized epithelial cells. These candidates encode components of protein complexes and signaling pathways that converge on the control of chromatin dynamics, cytoplasmic polyadenylation, and translation. Stromal fibroblast-specific deletion of mouse orthologs of several candidates resulted in the hyper-proliferation of mammary gland epithelium. Furthermore, a 33-gene signature of human orthologs was selectively enriched in the tumor stroma of breast cancer patients, and depletion of these factors from normal human breast fibroblasts increased proliferation of co-cultured breast cancer cells. This cross-species approach identified unanticipated regulatory networks in mesodermal cells with growth-suppressive function, exposing the conserved and selective nature of mesodermal-epithelial communication in development and cancer.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Regulatory Networks , ras Proteins/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Cell Lineage , Cell Proliferation , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Profiling , Genome , Humans , Mammary Glands, Animal/cytology , Mesoderm/metabolism , Mice , Mutation/genetics , Nuclear Proteins , Organ Specificity , Phenotype , Protein Kinases , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Signal Transduction/genetics , Stromal Cells/cytology , Stromal Cells/metabolism , ras GTPase-Activating Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...