Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 136: 112343, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38810305

ABSTRACT

Defective clearance of apoptotic cells due to impaired efferocytosis sustains error in self-tolerance that exacerbates rheumatoid arthritis (RA). However, the molecular determinant that directly or specifically impairs efferocytosis in RA is not yet studied. We identified a new perspective that IL-17A significantly impedes efferocytosis via preferential activation of the JAK/STAT-3/ADAM17 signaling axis. In contrast, disruption of the IL-17A/IL-17RA interaction using cyanidin or silencing of IL-17RA obstructed JAK/STAT-3 activation that further abolished ADAM17 expression. Subsequent depletion of ADAM17 inhibited the shedding of Mer tyrosine kinase receptor (MERTK), which significantly increased apoptotic cell intake and restored efferocytosis in adjuvant-induced arthritic (AA) model. Concomitantly, the amplification of the efferocytosis process due to IL-17A/IL-17RA interaction disruption was sensitive to mitochondrial fission mediated via Drp-1 phosphorylation downstream of STAT-3 inhibition. As expected, cyanidin treated AA synovial macrophages that exhibited increased efferocytosis demonstrated a phenotypic shift towards CD163 anti-inflammatory phenotype in a STAT-5 dependent manner. Similar results were obtained in IL-17A-sensitized AA synovial macrophages treated with S3I-201 (a STAT-3 inhibitor) indicating that IL-17A influences efferocytosis via the STAT-3 pathway. In view of our previous work where cyanidin restored Th17/Treg balance, our present investigation fulfils a critical gap by providing scientific validation that cyanidin escalated PD-L1 expression during the efferocytosis process that could have impacted the restoration of Th17/Treg balance in an AA model. Together, these data corroborate the hypothesis that IL-17A signaling can impair efferocytosis via regulating STAT-3/ADAM17/FL-MERTK axis and that its inhibition can amplify a pro-resolution signal against RA progression.


Subject(s)
Arthritis, Rheumatoid , B7-H1 Antigen , Interleukin-17 , Macrophages , Receptors, Interleukin-17 , STAT3 Transcription Factor , Signal Transduction , Interleukin-17/metabolism , Animals , STAT3 Transcription Factor/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/drug therapy , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , B7-H1 Antigen/metabolism , Mice , Receptors, Interleukin-17/metabolism , Receptors, Interleukin-17/genetics , Anthocyanins/pharmacology , Arthritis, Experimental/immunology , Humans , Disease Models, Animal , Phagocytosis/drug effects , Male , Synovial Membrane/immunology , Synovial Membrane/pathology , Mice, Inbred C57BL , Apoptosis/drug effects , Efferocytosis
2.
Bioorg Chem ; 138: 106606, 2023 09.
Article in English | MEDLINE | ID: mdl-37210826

ABSTRACT

The 12R-lipoxygenase (12R-LOX), a (non-heme) iron-containing metalloenzyme belonging to the lipoxygenase (LOX) family catalyzes the conversion of arachidonic acid (AA) to its key metabolites. Studies suggested that 12R-LOX plays a critical role in immune modulation for the maintenance of skin homeostasis and therefore can be considered as a potential drug target for psoriasis and other skin related inflammatory diseases. However, unlike 12-LOX (or 12S-LOX) the enzyme 12R-LOX did not receive much attention till date. In our effort, the 2-aryl quinoline derivatives were designed, synthesized and evaluated for the identification of potential inhibitors of 12R-hLOX. The merit of selection of 2-aryl quinolines was assessed by in silico docking studies of a representative compound (4a) using the homology model of 12R-LOX. Indeed, in addition to participating in H-bonding with THR628 and LEU635 the molecule formed a hydrophobic interaction with VAL631. The desired 2-aryl quinolines were synthesized either via the Claisen-Schmidt condensation followed by one-pot reduction-cyclization or via the AlCl3 induced heteroarylation or via the O-alkylation approach in good to high (82-95%) yield. When screened against human 12R-LOX (12R-hLOX) in vitro four compounds (e.g. 4a, 4d, 4e and 7b) showed encouraging (>45%) inhibition at 100 µM among which 7b and 4a emerged as the initial hits. Both the compounds showed selectivity towards 12R-hLOX over 12S-hLOX, 15-hLOX and 15-hLOXB and concentration dependent inhibition of 12R-hLOX with IC50 = 12.48 ± 2.06 and 28.25 ± 1.63 µM, respectively. The selectivity of 4a and 7b towards 12R-LOX over 12S-LOX was rationalized with the help of molecular dynamics simulations. The SAR (Structure-Activity Relationship) within the present series of compounds suggested the need of a o-hydroxyl group on the C-2 phenyl ring for the activity. The compound 4a and 7b (at 10 and 20 µM) reduced the hyper-proliferative state and colony forming potential of IMQ-induced psoriatic keratinocytes in a concentration dependent manner. Further, both compounds decreased the protein levels of Ki67 and the mRNA expression of IL-17A in the IMQ-induced psoriatic-like keratinocytes. Notably, 4a but not 7b inhibited the production of IL-6 and TNF-α in the keratinocyte cells. In the preliminary toxicity studies (i.e. teratogenicity, hepatotoxicity and heart rate assays) in zebrafish both the compounds showed low safety (<30 µM) margin. Overall, being the first identified inhibitors of 12R-LOX both 4a and 7b deserve further investigations.


Subject(s)
Quinolines , Zebrafish , Animals , Humans , Zebrafish/metabolism , Arachidonate 12-Lipoxygenase/metabolism , Skin/metabolism , Quinolines/pharmacology , Structure-Activity Relationship , Lipoxygenase Inhibitors/pharmacology , Molecular Docking Simulation
3.
Life Sci ; 298: 120516, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35367240

ABSTRACT

Interleukin 6 (IL-6), a pleiotropic inflammatory cytokine, is produced transiently due to tissue damage and infections. Nonetheless, IL-6 contributes to the host regenerative defense mechanism via classical signaling at the basal physiological level. Although tightly regulated transcriptional and post-transcriptional mechanism modulates its expression, dysregulated continual production of IL-6 during inflammatory conditions negatively affects immune cells. Molecular evidence has substantiated the pernicious out-turn of IL-6 trans-signaling in developing one such autoimmune joint disorder, rheumatoid arthritis (RA). Significantly increased levels of IL-6 in RA, along with multiple growth factors mainly released by synovial-like fibroblasts (FLS) and macrophages, is crucial for clinical disease progression. Due to its pathogenicity, in mediating inflammation and context-driven signaling cassette, blockade of IL-6 could be a potent target in the therapeutic intervention of RA. The clinical trials of various humanized IL-6 and anti-IL-6 receptor antibodies have proved their efficacy. However, severe side effects like neutropenia, thrombocytopenia, and abnormal liver enzymes contributed to dysfunctional adaptive immunity. The JAK-STAT pathway has been majorly implicated in RA disease progression upon IL-6 stimulation, simultaneously paving the path for innovative therapeutic approaches. JAK inhibitors, namely Tofacitinib, Baricitinib, Decernotinib, Upadacitinib, Peficitinib, and Filgotinib, have demonstrated clinical efficacy in recent decades as an alternative therapeutic strategy to abrogate IL-6 mediated aberrant activity in RA. This approach substitutes for the side effects incurred due to the IL-6 targeted therapies. This review discusses the history of research into IL-6 biology and therapies that target the IL-6 driven JAK/STAT pathway, including the successes, challenges, and drawbacks, emphasizing RA.


Subject(s)
Arthritis, Rheumatoid , Interleukin-6 , Arthritis, Rheumatoid/metabolism , Biology , Disease Progression , Fibroblasts/metabolism , Humans , Interleukin-6/metabolism , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Synovial Membrane/metabolism
4.
Immunol Invest ; 51(6): 1582-1597, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34704880

ABSTRACT

Fibroblast-like synoviocytes (FLS) are the critical effector cells primarily involved in rheumatoid arthritis (RA) disease pathogenesis. Interleukin (IL)-6, a proinflammatory cytokine most abundantly expressed in the rheumatoid synovium, promotes Janus kinase (JAK)/signal transducer and transcriptional activator (STAT) signaling cascade activation in RA-FLS, thus leading to its aggressive phenotype, invasiveness, and joint destruction. Momelotinib (CYT387) is a selective small-molecule inhibitor of JAK1/2 and is clinically approved to treat myelofibrosis. However, the therapeutic efficacy of CYT387 in FLS mediated RA pathogenesis is less known. In the present study, we investigated the modulatory effect of CYT387 on IL6/JAK/STAT signaling cascade in FLS induced RA pathogenesis. CYT387 treatment inhibited IL-6 induced high proliferative and migratory potential of FLS cells isolated from adjuvant-induced arthritic (AA) rats. CYT387 reduced the expression of PRMT5, survivin, and HIF-1α mediated by IL-6/sIL-6R in AA-FLS in a dose-dependent manner. The IL-6/sIL-6R induced expression of angiogenic factors such as VEGF and PIGF in AA-FLS cells was found downregulated by CYT387 treatment. Importantly, CYT387 significantly reduced IL-6/sIL-6R dependent activation of JAK1 and STAT3 and increased SOCS3 expression in AA-FLS cells. Next, the S3I-201 mediated blockade of STAT3 activation supported the inhibitory effect of CYT387 on IL-6/JAK1/STAT3 signaling cascade in AA-FLS. Overall, this study proves that CYT387 inhibits proliferation, migration, and pathogenic disease potential of FLS isolated from adjuvant-induced arthritic (AA) rats via targeting IL-6/JAK1/STAT3 signaling cascade.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Benzamides , Cell Proliferation , Cells, Cultured , Female , Fibroblasts , Interleukin-6/metabolism , Janus Kinase 1/metabolism , Placenta Growth Factor/metabolism , Placenta Growth Factor/pharmacology , Placenta Growth Factor/therapeutic use , Pyrimidines , Rats , STAT3 Transcription Factor/metabolism , Synovial Membrane/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...