Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 185: 263-273, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30342236

ABSTRACT

The role of sleep in brain physiology is poorly understood. Recently rodent studies have shown that the glymphatic system clears waste products from brain more efficiently during sleep compared to wakefulness due to the expansion of the interstitial fluid space facilitating entry of cerebrospinal fluid (CSF) into the brain. Here, we studied water diffusivity in the brain during sleep and awake conditions, hypothesizing that an increase in water diffusivity during sleep would occur concomitantly with an expansion of CSF volume - an effect that we predicted based on preclinical findings would be most prominent in cerebellum. We used MRI to measure slow and fast components of the apparent diffusion coefficient (ADC) of water in the brain in 50 healthy participants, in 30 of whom we compared awake versus sleep conditions and in 20 of whom we compared rested-wakefulness versus wakefulness following one night of sleep-deprivation. Sleep compared to wakefulness was associated with increases in slow-ADC in cerebellum and left temporal pole and with decreases in fast-ADC in thalamus, insula, parahippocampus and striatal regions, and the density of sleep arousals was inversely associated with ADC changes. The CSF volume was also increased during sleep and was associated with sleep-induced changes in ADCs in cerebellum. There were no differences in ADCs with wakefulness following sleep deprivation compared to rested-wakefulness. Although we hypothesized increases in ADC with sleep, our findings uncovered both increases in slow ADC (mostly in cerebellum) as well as decreases in fast ADC, which could reflect the distinct biological significance of fast- and slow-ADC values in relation to sleep. While preliminary, our findings suggest a more complex sleep-related glymphatic function in the human brain compared to rodents. On the other hand, our findings of sleep-induced changes in CSF volume provide preliminary evidence that is consistent with a glymphatic transport process in the human brain.


Subject(s)
Brain/metabolism , Cerebrospinal Fluid/metabolism , Glymphatic System/physiology , Sleep/physiology , Adult , Diffusion Magnetic Resonance Imaging , Female , Humans , Male
2.
Proc Natl Acad Sci U S A ; 115(17): 4483-4488, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29632177

ABSTRACT

The effects of acute sleep deprivation on ß-amyloid (Aß) clearance in the human brain have not been documented. Here we used PET and 18F-florbetaben to measure brain Aß burden (ABB) in 20 healthy controls tested after a night of rested sleep (baseline) and after a night of sleep deprivation. We show that one night of sleep deprivation, relative to baseline, resulted in a significant increase in Aß burden in the right hippocampus and thalamus. These increases were associated with mood worsening following sleep deprivation, but were not related to the genetic risk (APOE genotype) for Alzheimer's disease. Additionally, baseline ABB in a range of subcortical regions and the precuneus was inversely associated with reported night sleep hours. APOE genotyping was also linked to subcortical ABB, suggesting that different Alzheimer's disease risk factors might independently affect ABB in nearby brain regions. In summary, our findings show adverse effects of one-night sleep deprivation on brain ABB and expand on prior findings of higher Aß accumulation with chronic less sleep.


Subject(s)
Amyloid beta-Peptides/metabolism , Hippocampus/metabolism , Sleep Deprivation/diagnostic imaging , Sleep Deprivation/metabolism , Thalamus/metabolism , Adult , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Apolipoproteins E/genetics , Female , Genotype , Hippocampus/diagnostic imaging , Humans , Male , Middle Aged , Risk Factors , Sleep Deprivation/genetics , Thalamus/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...