Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37629951

ABSTRACT

Shape memory effects coupled with superelasticity are the distinctive characteristics of shape memory alloys (SMAs), a type of metal. When these alloys are subject to thermomechanical processing, they have the inherent ability to react to stimuli, such as heat. As a result, these alloys have established their usefulness in a variety of fields and have in recent years been chosen for use in stents, sensors, actuators, and several other forms of life-saving medical equipment. When it comes to the shape memory materials, nickel-titanium (Ni-Ti) alloys are in the forefront and have been chosen for use in a spectrum of demanding applications. As shape memory alloys (SMAs) are chosen for use in critical environments, such as blood streams (arteries and veins), orthodontic applications, orthopedic implants, and high temperature surroundings, such as actuators in aircraft engines, the phenomenon of environment-induced degradation is of both interest and concern. Hence, the environment-induced degradation behavior of the shape memory alloys (SMAs) needs to be studied to find viable ways to improve their resistance to an aggressive environment. The degradation that occurs upon exposure to an aggressive environment is often referred to as corrosion. Environment-induced degradation, or corrosion, being an unavoidable factor, certain techniques can be used for the purpose of enhancing the degradation resistance of shape memory alloys (SMAs). In this paper, we present and discuss the specific role of microstructure and contribution of environment to the degradation behavior of shape memory alloys (SMAs) while concurrently providing methods to resist both the development and growth of the degradation caused by the environment.

2.
J Biomed Mater Res B Appl Biomater ; 81(2): 343-50, 2007 May.
Article in English | MEDLINE | ID: mdl-17022054

ABSTRACT

Morphological and mechanical properties of hydroxyapatite (HAP)-reinforced polycaprolactone (PCL) were studied. The objective was to examine how morphological features alter the bulk mechanical properties in our laboratory-synthesized HAP-reinforced PCL. HAP crystals were synthesized by hydrolysis of mixtures of calcium and phosphate salts in the laboratory with wet chemical methods. The properties of the commercially available hydroxyapatite (HAP(1)) are compared with that of laboratory-synthesized hydroxyapatite (HAP(2)). The HAP crystals and composition were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectrometry (FTIR). The HAP(1) and HAP(2) crystals were dispersed into polymers to examine the mechanical behavior of bioactive composites, and the interfacial interactions between the polymer and HAP crystals are addressed. The FTIR results confirmed that the two forms of HAP crystals are consistent in terms of the functional chemical groups. The wide angle X-ray diffraction study was performed to determine the crystallinity of the bioactive composites. It was observed that the crystallinty of HAP-filled PCL steadily increased as the filler concentration increased. Generally, HAP(2) has a particle size considerably smaller than HAP(1) and the composite derived had higher modulus than conventional HAP-filled polymers. This increase in modulus is attributed to better interfacial interaction. Bioresorbability tests performed on HAP particles found that the synthesized HAP had higher resorption rates. It is clear that the mechanical properties are influenced by the particle size and therefore by the processing method used.


Subject(s)
Biocompatible Materials/chemistry , Durapatite/chemistry , Polyesters/chemistry , Animals , Humans , In Vitro Techniques , Materials Testing , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...