Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2021: 3102673, 2021.
Article in English | MEDLINE | ID: mdl-34869760

ABSTRACT

BACKGROUND: The National Science and Technology Development Agency (NSTDA) in Thailand researched and prototyped digital radiography systems under the brand name BodiiRay aiming for sustainable development and affordability of medical imaging technology. The image restoration and enhancement were implemented for the systems. PURPOSE: The image quality of the systems was evaluated using images from phantoms and from healthy volunteers. METHODS: The survey phantom images from BodiiRay and other two commercial systems using the exposure settings for the chest, the abdomen, and the extremity were evaluated by three experience observers in terms of the high-contrast image resolution, the low-contrast image detectability, and the grayscale differentiation. The volunteer images of the chests, the abdomens, and the extremities from BodiiRay were evaluated by three specialized radiologists based on visual grading on 5-point scaled questionnaires for the anatomy visibility, the image quality satisfaction, and the diagnosis confidence in using the images. RESULTS: BodiiRay phantom results were similar to those from the commercial systems. The overall performance averaged across the exposure settings showed that BodiiRay was slightly better than Fujifilm FDR Go in the low-contrast detectability (p = 0.033) and in the grayscale differentiation (p = 0.004). It was also slightly better than Siemens YSIO Max in the high-contrast resolution (p = 0.018). The images of chest, pelvis, and hand phantoms illustrated comparable visual quality. For volunteer images, the percentage of the images scored ≥4 ranged from 61% to 99%, 23% to 92%, and 96% to 99% for the chest, abdomen, and extremity images, respectively. The average score ranged from 3.63 to 4.46, 3.18 to 4.21, and 4.41 to 4.51 for the chest, abdomen, and extremity images, respectively. CONCLUSION: The phantom image results showed the comparability of these systems. The clinical evaluation showed BodiiRay images provided sufficient image qualities for digital radiography of these body parts.


Subject(s)
Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic/methods , Abdominal Cavity/diagnostic imaging , Hand/diagnostic imaging , Humans , Pelvis/diagnostic imaging , Phantoms, Imaging , Radiographic Image Enhancement/methods , Thailand , Thorax/diagnostic imaging
2.
Biomed Res Int ; 2016: 3262795, 2016.
Article in English | MEDLINE | ID: mdl-27022608

ABSTRACT

Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain.


Subject(s)
Brain/diagnostic imaging , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Models, Theoretical , X-Ray Diffraction/methods , Cone-Beam Computed Tomography/instrumentation , Humans , Phantoms, Imaging , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...