Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (197)2023 07 07.
Article in English | MEDLINE | ID: mdl-37486140

ABSTRACT

For successfully maintaining pregnancy with embryo transfer or artificial insemination, female recipient mice must be induced into a pseudopregnant state. Female mice are traditionally paired overnight with vasectomized males, and the following morning, the presence of a copulation plug is assessed. To increase the efficiency of producing pseudopregnant females, a cervical manipulation technique has been standardized to be used in combination with non-surgical embryo transfer or artificial insemination techniques in mice. The blunt end of a small plastic rod is inserted vaginally to contact the cervix and is vibrated for 30 s by contact with a trimmer. The procedure is quick and does not require anesthesia or analgesia. This technique increases the reliability and predictability of producing pseudopregnant females and entirely eliminates the requirement for vasectomized males. For CD1 mice, the efficiency of pseudopregnancy induction using cervical manipulation was 83% for females in estrus (N = 76) but only 38% of females in estrus were plugged by vasectomized males (N = 24). Artificial insemination in CD1 mice was performed by estrus synchronization with hormones, cervical manipulation, and the uterine transfer of sperm. Artificial insemination recipients receiving cervical manipulation (N = 76) had a pregnancy rate of 72% and an average litter size of 8.3 pups. This method can also be used to produce pseudopregnant females for non-surgical embryo transfer. Therefore, inducing pseudopregnancy by cervical manipulation is a convenient and efficient alternative to mating with a vasectomized male when performing non-surgical assisted reproduction techniques. Using cervical manipulation provides 3Rs (replacement, reduction, and refinement) benefits for assisted reproduction techniques by reducing the number of animals required and eliminating the necessity for surgically altered males.


Subject(s)
Pseudopregnancy , Semen , Pregnancy , Male , Mice , Female , Animals , Pseudopregnancy/surgery , Reproducibility of Results , Embryo Transfer/methods , Insemination, Artificial
2.
Sci Rep ; 11(1): 20926, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686739

ABSTRACT

Population-based studies identified an association between a prior pregnancy complicated by gestational diabetes mellitus (GDM) and cardiac hypertrophy and dysfunction later in life. It is however unclear whether GDM initiates this phenotype and what are the underlying mechanisms. We addressed these questions by using female rats that express human amylin (HIP rats) as a GDM model and their wild-type (WT) littermates as the normal pregnancy model. Pregnant and two months postpartum HIP females had increased left-ventricular mass and wall thickness compared to non-pregnant HIP females, which indicates the presence of concentric hypertrophy. These parameters were unchanged in WT females during both pregnancy and postpartum periods. Hypertrophic Ca2+-dependent calcineurin/NFAT signaling was stimulated two months after giving birth in HIP females but not in the WT. In contrast, the CaMKII/HDAC hypertrophy pathway was active immediately after giving birth and returned to the baseline by two months postpartum in both WT and HIP females. Myocytes from two months postpartum HIP females exhibited slower Ca2+ transient relaxation and higher diastolic Ca2+ levels, which may explain calcineurin activation. No such effects occurred in the WT. These results suggest that a GDM-complicated pregnancy accelerates the development of pathological cardiac remodeling likely through activation of calcineurin/NFAT signaling.


Subject(s)
Calcineurin/metabolism , Cardiomegaly/metabolism , Diabetes, Gestational/metabolism , NFATC Transcription Factors/metabolism , Postpartum Period/metabolism , Signal Transduction/physiology , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Female , Myocytes, Cardiac/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , Ventricular Remodeling/physiology
3.
Sci Rep ; 10(1): 17090, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33051497

ABSTRACT

The triterpene oil squalene is an essential component of nanoemulsion vaccine adjuvants. It is most notably in the MF59 adjuvant, a component in some seasonal influenza vaccines, in stockpiled, emulsion-based adjuvanted pandemic influenza vaccines, and with demonstrated efficacy for vaccines to other pandemic viruses, such as SARS-CoV-2. Squalene has historically been harvested from shark liver oil, which is undesirable for a variety of reasons. In this study, we have demonstrated the use of a Synthetic Biology (yeast) production platform to generate squalene and novel triterpene oils, all of which are equally as efficacious as vaccine adjuvants based on physiochemical properties and immunomodulating activities in a mouse model. These Synthetic Biology adjuvants also elicited similar IgG1, IgG2a, and total IgG levels compared to marine and commercial controls when formulated with common quadrivalent influenza antigens. Injection site morphology and serum cytokine levels did not suggest any reactogenic effects of the yeast-derived squalene or novel triterpenes, suggesting their safety in adjuvant formulations. These results support the advantages of yeast produced triterpene oils to include completely controlled growth conditions, just-in-time and scalable production, and the capacity to produce novel triterpenes beyond squalene.


Subject(s)
Adjuvants, Immunologic/chemistry , Influenza Vaccines/immunology , Triterpenes/chemistry , Animals , Antibodies, Viral/blood , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cytokines/blood , Immunoglobulin G/blood , Influenza Vaccines/chemistry , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Synthetic Biology/methods
4.
J Am Assoc Lab Anim Sci ; 59(5): 488-495, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32787997

ABSTRACT

The use of a nonsurgical embryo transfer technique in rodents eliminates the potential pain, distress, and health complications that may result from a surgical procedure and as such, represents a refinement in rodent assisted reproductive techniques. A nonsurgical technique has not been previously developed for use with rat embryos. Here we describe an efficient method to deliver either fresh or cultured blastocyst stage embryos to the uterine horn of pseudopregnant female rats using a rat nonsurgical embryo transfer (rNSET) device. The rNSET device is composed of a Teflon catheter and a hub that attaches to a 2 µL pipette. Oxytocin is used to dilate the cervix before the delivery of blastocysts, allowing passage of the rNSET catheter directly into the uterine horn for embryo delivery. The efficiency of recovery of pups after nonsurgical embryo transfer is similar to the efficiency after surgical embryo transfer. Furthermore, the technique is not stressful to the subjects, as demonstrated by the absence of a decrease in weight or increase in fecal corticosterone level in recipients of embryos delivered nonsurgically, without the use of anesthesia or analgesia.


Subject(s)
Blastocyst/physiology , Embryo Culture Techniques/veterinary , Embryo Transfer/veterinary , Animals , Embryo Transfer/methods , Female , Laboratory Animal Science , Oxytocics/pharmacology , Oxytocin/pharmacology , Rats , Uterus
5.
Diabetes ; 65(9): 2772-83, 2016 09.
Article in English | MEDLINE | ID: mdl-27335231

ABSTRACT

Hypersecretion of amylin is common in individuals with prediabetes, causes amylin deposition and proteotoxicity in pancreatic islets, and contributes to the development of type 2 diabetes. Recent studies also identified amylin deposits in failing hearts from patients with obesity or type 2 diabetes and demonstrated that hyperamylinemia accelerates the development of heart dysfunction in rats expressing human amylin in pancreatic ß-cells (HIP rats). To further determine the impact of hyperamylinemia on cardiac myocytes, we investigated human myocardium, compared diabetic HIP rats with diabetic rats expressing endogenous (nonamyloidogenic) rat amylin, studied normal mice injected with aggregated human amylin, and developed in vitro cell models. We found that amylin deposition negatively affects cardiac myocytes by inducing sarcolemmal injury, generating reactive aldehydes, forming amylin-based adducts with reactive aldehydes, and increasing synthesis of the proinflammatory cytokine interleukin-1ß (IL-1ß) independently of hyperglycemia. These results are consistent with the pathological role of amylin deposition in the pancreas, uncover a novel contributing mechanism to cardiac myocyte injury in type 2 diabetes, and suggest a potentially treatable link of type 2 diabetes with diabetic heart disease. Although further studies are necessary, these data also suggest that IL-1ß might function as a sensor of myocyte amylin uptake and a potential mediator of myocyte injury.


Subject(s)
Interleukin-1beta/metabolism , Islet Amyloid Polypeptide/metabolism , Lipid Peroxides/metabolism , Myocardium/metabolism , Sarcolemma/metabolism , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Humans , Immunochemistry , Metabolomics , Myocytes, Cardiac/metabolism , Rats , Rats, Sprague-Dawley
6.
J Am Heart Assoc ; 4(9): e002183, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26316524

ABSTRACT

BACKGROUND: Intracellular Na(+) concentration ([Na(+)]i) regulates Ca(2+) cycling, contractility, metabolism, and electrical stability of the heart. [Na(+)]i is elevated in heart failure, leading to arrhythmias and oxidative stress. We hypothesized that myocyte [Na(+)]i is also increased in type 2 diabetes (T2D) due to enhanced activity of the Na(+)-glucose cotransporter. METHODS AND RESULTS: To test this hypothesis, we used myocardial tissue from humans with T2D and a rat model of late-onset T2D (HIP rat). Western blot analysis showed increased Na(+)-glucose cotransporter expression in failing hearts from T2D patients compared with nondiabetic persons (by 73±13%) and in HIP rat hearts versus wild-type (WT) littermates (by 61±8%). [Na(+)]i was elevated in HIP rat myocytes both at rest (14.7±0.9 versus 11.4±0.7 mmol/L in WT) and during electrical stimulation (17.3±0.8 versus 15.0±0.7 mmol/L); however, the Na(+)/K(+)-pump function was similar in HIP and WT cells, suggesting that higher [Na(+)]i is due to enhanced Na(+) entry in diabetic hearts. Indeed, Na(+) influx was significantly larger in myocytes from HIP versus WT rats (1.77±0.11 versus 1.29±0.06 mmol/L per minute). Na(+)-glucose cotransporter inhibition with phlorizin or glucose-free solution greatly reduced Na(+) influx in HIP myocytes (to 1.20±0.16 mmol/L per minute), whereas it had no effect in WT cells. Phlorizin also significantly decreased glucose uptake in HIP myocytes (by 33±9%) but not in WT, indicating an increased reliance on the Na(+)-glucose cotransporter for glucose uptake in T2D hearts. CONCLUSIONS: Myocyte Na(+)-glucose cotransport is enhanced in T2D, which increases Na(+) influx and causes Na(+) overload. Higher [Na(+)]i may contribute to arrhythmogenesis and oxidative stress in diabetic hearts.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetic Cardiomyopathies/metabolism , Heart Failure/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Sodium-Glucose Transporter 1/metabolism , Sodium/metabolism , Aged , Animals , Diabetes Mellitus, Type 2/complications , Diabetic Cardiomyopathies/etiology , Disease Models, Animal , Female , Heart Failure/etiology , Humans , Male , Middle Aged , Myocytes, Cardiac/drug effects , Phlorhizin/pharmacology , Rats, Sprague-Dawley , Sodium-Glucose Transporter 1/antagonists & inhibitors , Time Factors , Up-Regulation
7.
Mol Neurodegener ; 9: 30, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25149184

ABSTRACT

BACKGROUND: We recently found that brain tissue from patients with type-2 diabetes (T2D) and cognitive impairment contains deposits of amylin, an amyloidogenic hormone synthesized and co-secreted with insulin by pancreatic ß-cells. Amylin deposition is promoted by chronic hypersecretion of amylin (hyperamylinemia), which is common in humans with obesity or pre-diabetic insulin resistance. Human amylin oligomerizes quickly when oversecreted, which is toxic, induces inflammation in pancreatic islets and contributes to the development of T2D. Here, we tested the hypothesis that accumulation of oligomerized amylin affects brain function. METHODS: In contrast to amylin from humans, rodent amylin is neither amyloidogenic nor cytotoxic. We exploited this fact by comparing rats overexpressing human amylin in the pancreas (HIP rats) with their littermate rats which express only wild-type (WT) non-amyloidogenic rodent amylin. Cage activity, rotarod and novel object recognition tests were performed on animals nine months of age or older. Amylin deposition in the brain was documented by immunohistochemistry, and western blot. We also measured neuroinflammation by immunohistochemistry, quantitative real-time PCR and cytokine protein levels. RESULTS: Compared to WT rats, HIP rats show i) reduced exploratory drive, ii) impaired recognition memory and iii) no ability to improve the performance on the rotarod. The development of neurological deficits is associated with amylin accumulation in the brain. The level of oligomerized amylin in supernatant fractions and pellets from brain homogenates is almost double in HIP rats compared with WT littermates (P < 0.05). Large amylin deposits (>50 µm diameter) were also occasionally seen in HIP rat brains. Accumulation of oligomerized amylin alters the brain structure at the molecular level. Immunohistochemistry analysis with an ED1 antibody indicates possible activated microglia/macrophages which are clustering in areas positive for amylin infiltration. Multiple inflammatory markers are expressed in HIP rat brains as opposed to WT rats, confirming that amylin deposition in the brain induces a neuroinflammatory response. CONCLUSIONS: Hyperamylinemia promotes accumulation of oligomerized amylin in the brain leading to neurological deficits through an oligomerized amylin-mediated inflammatory response. Additional studies are needed to determine whether brain amylin accumulation may predispose to diabetic brain injury and cognitive decline.


Subject(s)
Brain/pathology , Cognition Disorders/pathology , Diabetes Mellitus, Type 2/complications , Inflammation/pathology , Islet Amyloid Polypeptide/metabolism , Animals , Behavior, Animal/physiology , Blotting, Western , Brain/metabolism , Cognition Disorders/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans , Immunohistochemistry , Inflammation/metabolism , Rats , Real-Time Polymerase Chain Reaction
8.
Gend Med ; 9(5): 319-28, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22981166

ABSTRACT

BACKGROUND: Despite numerous clinical and animal studies, the role of sex steroid hormones on lipoprotein metabolism and atherosclerosis remain controversial. OBJECTIVE: We sought to determine the effects of endogenous estrogen and testosterone on lipoprotein levels and atherosclerosis using mice fed a low-fat diet with no added cholesterol. METHODS: Male and female low-density lipoprotein receptor-deficient mice were fed an open stock low-fat diet (10% of kcals from fat) for 2, 4, or 17 weeks. Ovariectomy, orchidectomy, or sham surgeries were performed to evaluate the effects of the presence or absence of endogenous hormones on lipid levels, lipoprotein distribution, and atherosclerosis development. RESULTS: Female mice fed the study diet for 17 weeks had a marked increase in levels of total cholesterol, triglycerides, apolipoprotein-B containing lipoproteins, and atherosclerosis compared with male mice. Surprisingly, ovariectomy in female mice had no effect on any of these parameters. In contrast, castration of male mice markedly increased total cholesterol concentrations, triglycerides, apolipoprotein B-containing lipoproteins, and atherosclerotic lesion formation compared with male and female mice. CONCLUSIONS: These data suggest that endogenous androgens protect against diet-induced increases in cholesterol concentrations, formation of proatherogenic lipoproteins, and atherosclerotic lesions formation. Conversely orchidectomy, which decreases androgen concentrations, promotes increases in cholesterol concentrations, proatherogenic lipoprotein formation, and atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice in response to a low-fat diet.


Subject(s)
Androgens/metabolism , Atherosclerosis/metabolism , Hypercholesterolemia/metabolism , Hyperlipoproteinemia Type II/metabolism , Lipids/blood , Lipoproteins, LDL/blood , Animals , Diet, Fat-Restricted , Female , Male , Mice , Receptors, LDL/genetics , Sex Factors
9.
Math Biosci ; 208(1): 26-32, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17188309

ABSTRACT

Is the classical predator-prey theory inherently pathological? Defenders of the theory are losing ground in the debate. We will demonstrate that detractors' main argument is based on a faulty model, and that the conceptual and predictive bases of the theory are fundamentally sound.


Subject(s)
Models, Biological , Pest Control, Biological/methods , Predatory Behavior , Algorithms , Animals , Ecosystem , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...