Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Blood Cancer Discov ; 1(1): 48-67, 2020 07.
Article in English | MEDLINE | ID: mdl-32974613

ABSTRACT

Persistence of drug-resistant quiescent leukemic stem cells (LSC) and impaired natural killer (NK) cell immune response account for relapse of chronic myelogenous leukemia (CML). Inactivation of protein phosphatase 2A (PP2A) is essential for CML-quiescent LSC survival and NK cell antitumor activity. Here we show that MIR300 has antiproliferative and PP2A-activating functions that are dose dependently differentially induced by CCND2/CDK6 and SET inhibition, respectively. MIR300 is upregulated in CML LSCs and NK cells by bone marrow microenvironment (BMM) signals to induce quiescence and impair immune response, respectively. Conversely, BCR-ABL1 downregulates MIR300 in CML progenitors to prevent growth arrest and PP2A-mediated apoptosis. Quiescent LSCs escape apoptosis by upregulating TUG1 long noncoding RNA that uncouples and limits MIR300 function to cytostasis. Genetic and pharmacologic MIR300 modulation and/or PP2A-activating drug treatment restore NK cell activity, inhibit BMM-induced growth arrest, and selectively trigger LSC apoptosis in vitro and in patient-derived xenografts; hence, the importance of MIR300 and PP2A activity for CML development and therapy.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , MicroRNAs , Humans , Killer Cells, Natural , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , MicroRNAs/genetics , Neoplastic Stem Cells , Protein Kinase Inhibitors/metabolism , Protein Phosphatase 2/genetics , Tumor Microenvironment/genetics
2.
PLoS One ; 13(11): e0206620, 2018.
Article in English | MEDLINE | ID: mdl-30408048

ABSTRACT

The increasing interest in exploring the human genome and identifying genetic risk factors contributing to the susceptibility to and outcome of diseases has supported the rapid development of genome-wide techniques. However, the large amount of obtained data requires extensive bioinformatics analysis. In this work, we established an approach combining amplified fragment length polymorphism (AFLP), AFLP in silico and next generation sequencing (NGS) methods to map the malignant genome of patients with chronic myeloid leukemia. We compared the unique DNA fingerprints of patients generated by the AFLP technique approach with those of healthy donors to identify AFLP markers associated with the disease and/or the response to treatment with imatinib, a tyrosine kinase inhibitor. Among the statistically significant AFLP markers selected for NGS analysis and virtual fingerprinting, we identified the sequences of three fragments in the region of DNA repeat element OldhAT1, LINE L1M7, LTR MER90, and satellite ALR/Alpha among repetitive elements, which may indicate a role of these non-coding repetitive sequences in hematological malignancy. SNPs leading to the presence/absence of these fragments were confirmed by Sanger sequencing. When evaluating the results of AFLP analysis for some fragments, we faced the frequently discussed size homoplasy, resulting in co-migration of non-identical AFLP fragments that may originate from an insertion/deletion, SNP, somatic mutation anywhere in the genome, or combination thereof. The AFLP-AFLP in silico-NGS procedure represents a smart alternative to microarrays and relatively expensive and bioinformatically challenging whole-genome sequencing to detect the association of variable regions of the human genome with diseases.


Subject(s)
Amplified Fragment Length Polymorphism Analysis/methods , DNA, Neoplasm/genetics , High-Throughput Nucleotide Sequencing/methods , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA/methods , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , Base Sequence , Case-Control Studies , Cohort Studies , Computational Biology/methods , Computer Simulation , DNA Fingerprinting/methods , Female , Genome, Human , Humans , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Male , Middle Aged , Protein Kinase Inhibitors/therapeutic use , Young Adult
3.
Haematologica ; 103(12): 2016-2025, 2018 12.
Article in English | MEDLINE | ID: mdl-30049824

ABSTRACT

The fusion oncoprotein BCR-ABL1 exhibits aberrant tyrosine kinase activity and it has been proposed that it deregulates signaling networks involving both transcription factors and non-coding microRNAs that result in chronic myeloid leukemia (CML). Previously, microRNA expression profiling showed deregulated expression of miR-150 and miR-155 in CML. In this study, we placed these findings into the broader context of the MYC/miR-150/MYB/miR-155/PU.1 oncogenic network. We propose that up-regulated MYC and miR-155 in CD34+ leukemic stem and progenitor cells, in concert with BCR-ABL1, impair the molecular mechanisms of myeloid differentiation associated with low miR-150 and PU.1 levels. We revealed that MYC directly occupied the -11.7 kb and -0.35 kb regulatory regions in the MIR150 gene. MYC occupancy was markedly increased through BCR-ABL1 activity, causing inhibition of MIR150 gene expression in CML CD34+ and CD34- cells. Furthermore, we found an association between reduced miR-150 levels in CML blast cells and their resistance to tyrosine kinase inhibitors (TKIs). Although TKIs successfully disrupted BCR-ABL1 kinase activity in proliferating CML cells, this treatment did not efficiently target quiescent leukemic stem cells. The study presents new evidence regarding the MYC/miR-150/MYB/miR-155/PU.1 leukemic network established by aberrant BCR-ABL1 activity. The key connecting nodes of this network may serve as potential druggable targets to overcome resistance of CML stem and progenitor cells.


Subject(s)
Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl/genetics , Genes, myc/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , MicroRNAs/genetics , Adult , Aged , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Down-Regulation/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Leukemic/drug effects , HL-60 Cells , Humans , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Middle Aged , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Protein Kinase Inhibitors/pharmacology
4.
J Cell Mol Med ; 16(11): 2655-66, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22469014

ABSTRACT

MicroRNAs (miRNAs) constitute a robust regulatory network with post-transcriptional regulatory efficiency for almost one half of human coding genes, including oncogenes and tumour suppressors. We determined the expression profile of 667 miRNAs in colorectal cancer (CRC) tissues and paired non-tumoural tissues and identified 42 differentially expressed miRNAs. We chose miR-215, miR-375, miR-378, miR-422a and miR-135b for further validation on an independent cohort of 125 clinically characterized CRC patients and for in vitro analyses. MiR-215, miR-375, miR-378 and miR-422a were significantly decreased, whereas miR-135b was increased in CRC tumour tissues. Levels of miR-215 and miR-422a correlated with clinical stage. MiR-135b was associated with higher pre-operative serum levels of CEA and CA19-9. In vitro analyses showed that ectopic expression of miR-215 decreases viability and migration, increases apoptosis and promotes cell cycle arrest in DLD-1 and HCT-116 colon cancer cell lines. Similarly, overexpression of miR-375 and inhibition of miR-135b led to decreased viability. Finally, restoration of miR-378, miR-422a and miR-375 inhibited G1/S transition. These findings indicate that miR-378, miR-375, miR-422a and miR-215 play an important role in CRC as tumour suppressors, whereas miR-135b functions as an oncogene; both groups of miRNA contribute to CRC pathogenesis.


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Adult , Aged , Aged, 80 and over , Apoptosis/genetics , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Movement/genetics , Colorectal Neoplasms/pathology , Female , Genes, Tumor Suppressor , Humans , Male , Middle Aged , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...