Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 35(19): 3168-70, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20890322

ABSTRACT

We report on the real-space observation of resonant frequency splitting in a high-Q waveguide-coupled silicon-on-insulator microdisk resonator. Phase sensitive near-field analysis reveals the stationary nature of the two resonant states, and spectral investigations clearly show their orthogonality. These measurements emphasize the role of the coupling waveguide in this splitting phenomenon. The symmetry of the two stationary whispering gallery modes is clearly observed and is found to follow the axial symmetry of the waveguide-coupled microdisk as it has been reported by earlier theoretical predictions.

2.
Opt Express ; 16(16): 11718-26, 2008 Aug 04.
Article in English | MEDLINE | ID: mdl-18679441

ABSTRACT

The use of laser optical feedback Imaging (LOFI) for scattering-type scanning near-field optical microscopy (sSNOM) is proposed and investigated. We implement this sensitive imaging method by combining a sSNOM with optical heterodyne interferometry and the dynamic properties of a B class laser source which is here used both as source and detector. Compared with previous near field optical heterodyne experiments, this detection scheme provides an optical amplification that is several orders of magnitude higher, while keeping a low noise phase-sensitive detection. Successful demonstration of this complex field imaging technique is done on Silicon on Insulator (SOI) optical waveguides revealing phase singularities and directional leakage.


Subject(s)
Interferometry/instrumentation , Microscopy, Phase-Contrast/instrumentation , Microscopy, Scanning Probe/instrumentation , Optics and Photonics/instrumentation , Equipment Design , Equipment Failure Analysis
3.
Opt Express ; 13(14): 5553-64, 2005 Jul 11.
Article in English | MEDLINE | ID: mdl-19498552

ABSTRACT

An inherent problem to the study of waveguides with strong propagation losses by Scattering-type Scanning Near field Optical Microscopy is the coherent optical background field which disrupts strongly the weak detected near-field signal. We present a technique of heterodyne detection allowing us to overcome this difficulty while amplifying the near field signal. As illustrated in the case of a highly confined SOI structure, this technique, besides the amplitude, provides the local phase variation of the guided field. The knowledge of the complex field cartography leads to the modal analysis of the propagating radiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...