Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
FEBS J ; 291(1): 114-131, 2024 01.
Article in English | MEDLINE | ID: mdl-37690456

ABSTRACT

The metalloproteinase ovastacin is released by the mammalian egg upon fertilization and cleaves a distinct peptide bond in zona pellucida protein 2 (ZP2), a component of the enveloping extracellular matrix. This limited proteolysis causes zona pellucida hardening, abolishes sperm binding, and thereby regulates fertility. Accordingly, this process is tightly controlled by the plasma protein fetuin-B, an endogenous competitive inhibitor. At present, little is known about how the cleavage characteristics of ovastacin differ from closely related proteases. Physiological implications of ovastacin beyond ZP2 cleavage are still obscure. In this study, we employed N-terminal amine isotopic labeling of substrates (N-TAILS) contained in the secretome of mouse embryonic fibroblasts to elucidate the substrate specificity and the precise cleavage site specificity. Furthermore, we were able to unravel the physicochemical properties governing ovastacin-substrate interactions as well as the individual characteristics that distinguish ovastacin from similar proteases, such as meprins and tolloid. Eventually, we identified several substrates whose cleavage could affect mammalian fertilization. Consequently, these substrates indicate newly identified functions of ovastacin in mammalian fertilization beyond zona pellucida hardening.


Subject(s)
Fibroblasts , Semen , Male , Animals , Mice , Zona Pellucida Glycoproteins/metabolism , Fibroblasts/metabolism , Semen/metabolism , Metalloproteases/metabolism , Mammals/metabolism , Endopeptidases , Fertilization/physiology
2.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1347-1357, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36322418

ABSTRACT

The horseshoe crab Limulus polyphemus is one of few extant Limulus species, which date back to ∼250 million years ago under the conservation of a common Bauplan documented by fossil records. It possesses the only proteolytic blood-coagulation and innate immunity system outside vertebrates and is a model organism for the study of the evolution and function of peptidases. The astacins are a family of metallopeptidases that share a central ∼200-residue catalytic domain (CD), which is found in >1000 species across holozoans and, sporadically, bacteria. Here, the zymogen of an astacin from L. polyphemus was crystallized and its structure was solved. A 34-residue, mostly unstructured pro-peptide (PP) traverses, and thus blocks, the active-site cleft of the CD in the opposite direction to a substrate. A central `PP motif' (F35-E-G-D-I39) adopts a loop structure which positions Asp38 to bind the catalytic metal, replacing the solvent molecule required for catalysis in the mature enzyme according to an `aspartate-switch' mechanism. Maturation cleavage of the PP liberates the cleft and causes the rearrangement of an `activation segment'. Moreover, the mature N-terminus is repositioned to penetrate the CD moiety and is anchored to a buried `family-specific' glutamate. Overall, this mechanism of latency is reminiscent of that of the other three astacins with known zymogenic and mature structures, namely crayfish astacin, human meprin ß and bacterial myroilysin, but each shows specific structural characteristics. Remarkably, myroilysin lacks the PP motif and employs a cysteine instead of the aspartate to block the catalytic metal.


Subject(s)
Aspartic Acid , Metalloproteases , Animals , Humans , Metalloproteases/metabolism , Enzyme Precursors/chemistry , Catalytic Domain , Peptide Hydrolases/metabolism
3.
Front Mol Biosci ; 9: 1080836, 2022.
Article in English | MEDLINE | ID: mdl-36685277

ABSTRACT

The astacins are a family of metallopeptidases (MPs) that has been extensively described from animals. They are multidomain extracellular proteins, which have a conserved core architecture encompassing a signal peptide for secretion, a prodomain or prosegment and a zinc-dependent catalytic domain (CD). This constellation is found in the archetypal name-giving digestive enzyme astacin from the European crayfish Astacus astacus. Astacin catalytic domains span ∼200 residues and consist of two subdomains that flank an extended active-site cleft. They share several structural elements including a long zinc-binding consensus sequence (HEXXHXXGXXH) immediately followed by an EXXRXDRD motif, which features a family-specific glutamate. In addition, a downstream SIMHY-motif encompasses a "Met-turn" methionine and a zinc-binding tyrosine. The overall architecture and some structural features of astacin catalytic domains match those of other more distantly related MPs, which together constitute the metzincin clan of metallopeptidases. We further analysed the structures of PRO-, MAM, TRAF, CUB and EGF-like domains, and described their essential molecular determinants. In addition, we investigated the distribution of astacins across kingdoms and their phylogenetic origin. Through extensive sequence searches we found astacin CDs in > 25,000 sequences down the tree of life from humans beyond Metazoa, including Choanoflagellata, Filasterea and Ichtyosporea. We also found < 400 sequences scattered across non-holozoan eukaryotes including some fungi and one virus, as well as in selected taxa of archaea and bacteria that are pathogens or colonizers of animal hosts, but not in plants. Overall, we propose that astacins originate in the root of Holozoa consistent with Darwinian descent and that the latter genes might be the result of horizontal gene transfer from holozoan donors.

4.
Reproduction ; 162(4): 259-266, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34320465

ABSTRACT

After fertilization, the oocyte-specific metalloproteinase ovastacin is released and cleaves the zona pellucida protein 2 (ZP2), making the zona pellucida impermeable to sperm. Before fertilization, the zona remains permeable because previously released ovastacin is inhibited by fetuin-B. Consequently, in the absence of fetuin-B, ZP2 cleavage occurs prematurely and leads to infertility of female fetuin-B deficient mice. In contrast, fetuin-B/ovastacin double-deficient oocytes show a permanently permeable zona with intact ZP2. In this study, we asked if the elastic modulus of the zona pellucida informs about ZP2 cleavage and thus could serve as a new reference of oocyte fertility. Therefore, we determined the elastic modulus of mouse oocytes by nanoindentation as a direct measure of mechanical zona hardening. The elastic modulus reflects ZP2 cleavage, but with more than double sensitivity compared to immunoblot analysis. The elastic modulus measurement allowed to define the range of zona hardening, confined by the extreme states of the zona pellucida in fetuin-B and ovastacin-deficient oocytes with cleaved and uncleaved ZP2, respectively. We present here nanoindentation as a method to quantify the effect of potential contributing factors on the zona hardening of individual oocytes. To demonstrate this, we showed that mechanical hardening of the zona pellucida is forced by recombinant ovastacin, inhibited by additional administration of fetuin-B, and unaffected by zinc. Since the change in elastic modulus is induced by ZP2 cleavage, an automated elastic modulus measurement of oocytes may serve as a novel sensitive, non-destructive, marker-free, and observer-unbiased method for assessing individual oocyte quality.


Subject(s)
Oocytes , Zona Pellucida , Animals , Female , Fetuin-B/metabolism , Fetuin-B/pharmacology , Male , Mice , Oocytes/metabolism , Spermatozoa/metabolism , Zona Pellucida Glycoproteins/metabolism
5.
BMC Biol ; 19(1): 120, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34107975

ABSTRACT

BACKGROUND: The Hydra head organizer acts as a signaling center that initiates and maintains the primary body axis in steady state polyps and during budding or regeneration. Wnt/beta-Catenin signaling functions as a primary cue controlling this process, but how Wnt ligand activity is locally restricted at the protein level is poorly understood. Here we report a proteomic analysis of Hydra head tissue leading to the identification of an astacin family proteinase as a Wnt processing factor. RESULTS: Hydra astacin-7 (HAS-7) is expressed from gland cells as an apical-distal gradient in the body column, peaking close beneath the tentacle zone. HAS-7 siRNA knockdown abrogates HyWnt3 proteolysis in the head tissue and induces a robust double axis phenotype, which is rescued by simultaneous HyWnt3 knockdown. Accordingly, double axes are also observed in conditions of increased Wnt activity as in transgenic actin::HyWnt3 and HyDkk1/2/4 siRNA treated animals. HyWnt3-induced double axes in Xenopus embryos could be rescued by coinjection of HAS-7 mRNA. Mathematical modelling combined with experimental promotor analysis indicate an indirect regulation of HAS-7 by beta-Catenin, expanding the classical Turing-type activator-inhibitor model. CONCLUSIONS: We show the astacin family protease HAS-7 maintains a single head organizer through proteolysis of HyWnt3. Our data suggest a negative regulatory function of Wnt processing astacin proteinases in the global patterning of the oral-aboral axis in Hydra.


Subject(s)
Hydra , Animals , Body Patterning , Head , Hydra/genetics , Metalloendopeptidases , Proteolysis , Proteomics , RNA, Small Interfering , Wnt Proteins/metabolism , Wnt Signaling Pathway , beta Catenin/genetics , beta Catenin/metabolism
6.
Mol Hum Reprod ; 27(4)2021 03 24.
Article in English | MEDLINE | ID: mdl-33779727

ABSTRACT

The encounter of oocyte and sperm is the key event initiating embryonic development in mammals. Crucial functions of this existential interaction are determined by proteolytic enzymes, such as acrosin, carried in the sperm head acrosome, and ovastacin, stored in the oocyte cortical granules. Ovastacin is released upon fertilisation to cleave the zona pellucida, a glycoprotein matrix surrounding the oocyte. This limited proteolysis hardens the oocyte envelope, and thereby provides a definitive block against polyspermy and protects the developing embryo. On the other hand, acrosin, the renowned and most abundant acrosomal protease, has been thought to enable sperm to penetrate the oocyte envelope. Depending on the species, proteolytic cleavage of the zona pellucida by acrosin is either essential or conducive for fertilisation. However, the specific target cleavage sites and the resulting physiological consequences of this proteolysis remained obscure. Here, we treated native mouse zonae pellucidae with active acrosin and identified two cleavage sites in zona pellucida protein 1 (ZP1), five in ZP2 and one in ZP3 by mass spectrometry. Several of these sites are highly conserved in mammals. Remarkably, limited proteolysis by acrosin leads to zona pellucida remodelling rather than degradation. Thus, acrosin affects both sperm binding and mechanical resilience of the zona pellucida, as assessed by microscopy and nanoindentation measurements, respectively. Furthermore, we ascertained potential regulatory effects of acrosin, via activation of latent pro-ovastacin and inactivation of fetuin-B, a tight binding inhibitor of ovastacin. These results offer novel insights into the complex proteolytic network modifying the extracellular matrix of the mouse oocyte, which might apply also to other species.


Subject(s)
Acrosin , Zona Pellucida , Acrosin/genetics , Acrosome/physiology , Animals , Male , Mammals , Mice , Proteolysis , Sperm-Ovum Interactions/physiology , Spermatozoa/metabolism , Zona Pellucida/metabolism , Zona Pellucida Glycoproteins/genetics , Zona Pellucida Glycoproteins/metabolism
7.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33782129

ABSTRACT

Meprin ß (Mß) is a multidomain type-I membrane metallopeptidase that sheds membrane-anchored substrates, releasing their soluble forms. Fetuin-B (FB) is its only known endogenous protein inhibitor. Herein, we analyzed the interaction between the ectodomain of Mß (MßΔC) and FB, which stabilizes the enzyme and inhibits it with subnanomolar affinity. The MßΔC:FB crystal structure reveals a ∼250-kDa, ∼160-Å polyglycosylated heterotetrameric particle with a remarkable glycan structure. Two FB moieties insert like wedges through a "CPDCP trunk" and two hairpins into the respective peptidase catalytic domains, blocking the catalytic zinc ions through an "aspartate switch" mechanism. Uniquely, the active site clefts are obstructed from subsites S4 to S10', but S1 and S1' are spared, which prevents cleavage. Modeling of full-length Mß reveals an EGF-like domain between MßΔC and the transmembrane segment that likely serves as a hinge to transit between membrane-distal and membrane-proximal conformations for inhibition and catalysis, respectively.


Subject(s)
Fetuin-B/chemistry , Metalloendopeptidases/chemistry , Animals , Binding Sites , Cell Line , Fetuin-B/metabolism , Humans , Lepidoptera , Metalloendopeptidases/antagonists & inhibitors , Metalloendopeptidases/metabolism , Mice , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding
8.
ChemMedChem ; 16(6): 976-988, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33369214

ABSTRACT

Astacin metalloproteinases, in particular meprins α and ß, as well as ovastacin, are emerging drug targets. Drug-discovery efforts have led to the development of the first potent and selective inhibitors in the last few years. However, the most recent compounds are based on a highly flexible tertiary amine scaffold that could cause metabolic liabilities or decreased potency due to the entropic penalty upon binding to the target. Thus, the aim of this study was to discover novel conformationally constrained scaffolds as starting points for further inhibitor optimization. Shifting from flexible tertiary amines to rigid heteroaromatic cores resulted in a boost in inhibitory activity. Moreover, some compounds already exhibited higher activity against individual astacin proteinases compared to recently reported inhibitors and also a favorable off-target selectivity profile, thus qualifying them as very suitable chemical probes for target validation.


Subject(s)
Amines/pharmacology , Antineoplastic Agents/pharmacology , Drug Discovery , Hydrocarbons, Aromatic/pharmacology , Metalloendopeptidases/antagonists & inhibitors , Metalloproteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Amines/chemical synthesis , Amines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Hydrocarbons, Aromatic/chemical synthesis , Hydrocarbons, Aromatic/chemistry , Metalloendopeptidases/metabolism , Metalloproteases/metabolism , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Recombinant Proteins/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
9.
ChemMedChem ; 15(16): 1499-1504, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32946206

ABSTRACT

Despite huge progress in hormonal therapy and improved in vitro fertilization methods, the success rates in infertility treatment are still limited. A recently discovered mechanism revealed the interplay between the plasma protein fetuin-B and the cortical granule-based proteinase ovastacin to be a novel key mechanism in the regulation of fertilization. Upon sperm-egg fusion, cleavage of a distinct zona pellucida component by ovastacin destroys the sperm receptor, enhances zona robustness, and eventually provides a definitive block against polyspermy. An untimely onset of this zona hardening prior to fertilization would consequently result in infertility. Physiologically, this process is controlled by fetuin-B, an endogenous ovastacin inhibitor. Here we aimed to discover small-molecule inhibitors of ovastacin that could mimic the effect of fetuin-B. These compounds could be useful lead structures for the development of specific ovastacin inhibitors that can be used in infertility treatment or in vitro fertilization.


Subject(s)
Amines/pharmacology , Hydroxamic Acids/pharmacology , Infertility, Female/drug therapy , Metalloproteases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Amines/chemistry , Animals , Biocatalysis , Dose-Response Relationship, Drug , Female , Hydroxamic Acids/chemistry , Infertility, Female/metabolism , Metalloproteases/metabolism , Mice , Models, Molecular , Molecular Structure , Small Molecule Libraries/chemistry , Structure-Activity Relationship
10.
Sci Rep ; 9(1): 14683, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604990

ABSTRACT

Human fetuin-B plays a key physiological role in human fertility through its inhibitory action on ovastacin, a member of the astacin family of metallopeptidases. The inhibitor consists of tandem cystatin-like domains (CY1 and CY2), which are connected by a linker containing a "CPDCP-trunk" and followed by a C-terminal region (CTR) void of regular secondary structure. Here, we solved the crystal structure of the complex of the inhibitor with archetypal astacin from crayfish, which is a useful model of human ovastacin. Two hairpins from CY2, the linker, and the tip of the "legumain-binding loop" of CY1 inhibit crayfish astacin following the "raised-elephant-trunk mechanism" recently reported for mouse fetuin-B. This inhibition is exerted by blocking active-site cleft sub-sites upstream and downstream of the catalytic zinc ion, but not those flanking the scissile bond. However, contrary to the mouse complex, which was obtained with fetuin-B nicked at a single site but otherwise intact, most of the CTR was proteolytically removed during crystallization of the human complex. Moreover, the two complexes present in the crystallographic asymmetric unit diverged in the relative arrangement of CY1 and CY2, while the two complexes found for the mouse complex crystal structure were equivalent. Biochemical studies in vitro confirmed the differential cleavage susceptibility of human and mouse fetuin-B in front of crayfish astacin and revealed that the cleaved human inhibitor blocks crayfish astacin and human meprin α and ß only slightly less potently than the intact variant. Therefore, the CTR of animal fetuin-B orthologs may have a function in maintaining a particular relative orientation of CY1 and CY2 that nonetheless is dispensable for peptidase inhibition.


Subject(s)
Fetuin-B/ultrastructure , Metalloendopeptidases/ultrastructure , Metalloproteases/ultrastructure , Protein Conformation , Amino Acid Sequence/genetics , Animals , Astacoidea/chemistry , Astacoidea/ultrastructure , Binding Sites , Crystallography, X-Ray , Fertility/genetics , Fetuin-B/genetics , Humans , Metalloendopeptidases/genetics , Metalloproteases/antagonists & inhibitors , Metalloproteases/chemistry , Metalloproteases/genetics , Mice , Protein Structure, Secondary/genetics , Proteolysis , Zinc/chemistry
11.
Sci Rep ; 9(1): 546, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679641

ABSTRACT

Vertebrate fetuins are multi-domain plasma-proteins of the cystatin-superfamily. Human fetuin-A is also known as AHSG, α2-Heremans-Schmid-glycoprotein. Gene-knockout in mice identified fetuin-A as essential for calcified-matrix-metabolism and bone-mineralization. Fetuin-B deficient mice, on the other hand, are female infertile due to zona pellucida 'hardening' caused by the metalloproteinase ovastacin in unfertilized oocytes. In wildtype mice fetuin-B inhibits the activity of ovastacin thus maintaining oocytes fertilizable. Here we asked, if fetuins affect further proteases as might be expected from their evolutionary relation to single-domain-cystatins, known as proteinase-inhibitors. We show that fetuin-A is not an inhibitor of any tested protease. In stark contrast, the closely related fetuin-B selectively inhibits astacin-metalloproteinases such as meprins and ovastacin, but not astacins of the tolloid-subfamily, nor any other proteinase. The analysis of fetuin-B expressed in various mammalian cell types, insect cells, and truncated fish-fetuin expressed in bacteria, showed that the cystatin-like domains alone are necessary and sufficient for inhibition. This report highlights fetuin-B as a specific antagonist of ovastacin and meprin-metalloproteinases. Control of ovastacin was shown to be indispensable for female fertility. Meprin inhibition, on the other hand, renders fetuin-B a potential key-player in proteolytic networks controlling angiogenesis, immune-defense, extracellular-matrix-assembly and general cell-signaling, with implications for inflammation, fibrosis, neurodegenerative disorders and cancer.


Subject(s)
Fetuin-B/metabolism , Mammals/blood , Metalloendopeptidases/metabolism , Metalloproteases/metabolism , Plasma/metabolism , Animals , Astacoidea , Cattle , Fertilization/physiology , Fibrinolysin/metabolism , Glycosylation , Humans , Matrix Metalloproteinase 9/metabolism , Metalloproteases/antagonists & inhibitors , Mice , Proteolysis , Recombinant Proteins/metabolism , alpha-2-HS-Glycoprotein/metabolism
12.
FEBS J ; 286(5): 930-945, 2019 03.
Article in English | MEDLINE | ID: mdl-30422384

ABSTRACT

Matrix metalloproteinases (MMPs) are secreted as proenzymes, containing propeptides that interact with the catalytic zinc, thereby controlling MMP activation. The MMP-9 propeptide is unique in the MMP family because of its post-translational modification with an N-linked oligosaccharide. ProMMP-9 activation by MMP-3 occurs stepwise by cleavage of the propeptide in an aminoterminal (pro-AT) and carboxyterminal (pro-CT) peptide. We chemically synthesized aglycosyl pro-AT and pro-CT and purified recombinant glycosylated pro-ATSf-9 . First, we report new cleavage sites in the MMP-9 propeptide by MMP-3 and neutrophil elastase. Additionally, we demonstrated with the use of western blot analysis a higher resistance of glycosylated versus aglycosyl pro-AT against proteolysis by MMP-3, MMP-9, meprin α, neutrophil elastase and by protease-rich synovial fluids from rheumatoid arthritis patients. Moreover, we investigated the effect of glycosylation on proteolytic activation of human proMMP-9 with the use of zymography and dye-quenched gelatin cleavage analysis. Compared to recombinant Sf-9 proMMP-9 glycoforms, larger oligosaccharides of human neutrophil proMMP-9 increased resistance against proteolytic activation. Additionally, proMMP-9 from Congenital Disorder of Glycosylation patients, compared to healthy controls, showed a higher activation rate by MMP-3. Finally, we demonstrated that glycan-galectin-3 interactions reduced proMMP-9 activation. In conclusion, modification of MMP-9 propeptide glycosylation is a fine-tuning mechanism and co-determines the specific activity of MMP-9 in physiology and pathology. ENZYMES: MMP-9 EC 3.4.24.35, MMP-3 EC 3.4.24.17, meprin α EC 3.4.24.18, neutrophil elastase EC 3.4.21.37, trypsin EC 3.4.21.4 and PNGase F EC 3.5.1.52.


Subject(s)
Enzyme Precursors/metabolism , Galectin 3/metabolism , Gelatinases/metabolism , Matrix Metalloproteinase 9/metabolism , Amino Acid Sequence , Blood Proteins , Case-Control Studies , Congenital Disorders of Glycosylation/metabolism , Enzyme Activation , Galectins , Glycosylation , Humans , Leukocyte Elastase/metabolism , Matrix Metalloproteinase 3/metabolism , Proteolysis
13.
Mol Hum Reprod ; 23(9): 607-616, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28911209

ABSTRACT

STUDY QUESTION: How and where is pro-ovastacin activated and how does active ovastacin regulate zona pellucida hardening (ZPH) and successful fertilization? STUDY FINDING: Ovastacin is partially active before exocytosis and pre-hardens the zona pellucida (ZP) before fertilization. WHAT IS KNOWN ALREADY: The metalloproteinase ovastacin is stored in cortical granules, it cleaves zona pellucida protein 2 (ZP2) upon fertilization and thereby destroys the ZP sperm ligand and triggers ZPH. Female mice deficient in the extracellular circulating ovastacin-inhibitor fetuin-B are infertile due to pre-mature ZPH. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: We isolated oocytes from wild-type and ovastacin-deficient (Astlnull) FVB mice before and after fertilization (in vitro and in vivo) and quantified ovastacin activity and cleavage of ZP2 by immunoblot. We assessed ZPH by measuring ZP digestion time using α-chymotrypsin and by determining ZP2 cleavage. We determined cellular distribution of ovastacin by immunofluorescence using domain-specific ovastacin antibodies. Experiments were performed at least in triplicate with a minimum of 20 oocytes. Data were pre-analyzed using Shapiro-Wilk test. In case of normal distribution, significance was determined via two-sided Student's t-test, whereas in case of non-normal distribution via Mann-Whitney U-test. MAIN RESULTS AND THE ROLE OF CHANCE: Metaphase II (MII) oocytes contained both inactive pro-ovastacin and activated ovastacin. Immunoblot and ZP digestion assays revealed a partial cleavage of ZP2 even before fertilization in wild-type mice. Partial cleavage coincided with germinal-vesicle breakdown and MII, despite the presence of fetuin-B protein, an endogenous ovastacin inhibitor, in the follicular and oviductal fluid. Upon exocytosis, part of the C-terminal domain of ovastacin remained attached to the plasmalemma, while the N-terminal active ovastacin domain was secreted. This finding may resolve previously conflicting data showing that ovastacin acts both as an oolemmal receptor termed SAS1B (sperm acrosomal SLLP1 binding protein; SLLP, sperm lysozyme like protein) and a secreted protease mediating ZP2 cleavage. LIMITATIONS, REASONS FOR CAUTION: For this study, only oocytes isolated from wild-type and ovastacin-deficient FVB mice were investigated. Some experiments involved oocyte activation by the Ca2+ ionophore A23187 to trigger ZPH. WIDER IMPLICATIONS OF THE FINDINGS: This study provides a detailed spatial and temporal view of pre-mature cleavage of ZP2 by ovastacin, which is known to adversely affect IVF rate in mice and humans. LARGE SCALE DATA: None. STUDY FUNDING AND COMPETING INTEREST(S): This work was supported by the Center of Natural Sciences and Medicine and by a start-up grant of the Johannes Gutenberg University Mainz to W.S., and by a grant from Deutsche Forschungsgemeinschaft and by the START program of the Medical Faculty of RWTH Aachen University to J.F. and W.J.D. There are no competing interests to declare.


Subject(s)
Fetuin-B/genetics , Metalloproteases/genetics , Oocytes/metabolism , Zona Pellucida Glycoproteins/genetics , Zona Pellucida/metabolism , Animals , Chymotrypsin/chemistry , Exocytosis , Female , Fertilization in Vitro , Fetuin-B/metabolism , Gene Expression Regulation, Developmental , Male , Metalloproteases/metabolism , Metaphase , Mice , Oocytes/cytology , Oocytes/growth & development , Primary Cell Culture , Proteolysis , Signal Transduction , Spermatozoa/cytology , Spermatozoa/physiology , Zona Pellucida Glycoproteins/metabolism
14.
PLoS One ; 11(4): e0153290, 2016.
Article in English | MEDLINE | ID: mdl-27054568

ABSTRACT

GARP (glycoprotein A repetitions predominant) is a cell surface receptor on regulatory T-lymphocytes, platelets, hepatic stellate cells and certain cancer cells. Its described function is the binding and accommodation of latent TGFß (transforming growth factor), before the activation and release of the mature cytokine. For regulatory T cells it was shown that a knockdown of GARP or a treatment with blocking antibodies dramatically decreases their immune suppressive capacity. This confirms a fundamental role of GARP in the basic function of regulatory T cells. Prerequisites postulated for physiological GARP function include membrane anchorage of GARP, disulfide bridges between the propeptide of TGFß and GARP and connection of this propeptide to αvß6 or αvß8 integrins of target cells during mechanical TGFß release. Other studies indicate the existence of soluble GARP complexes and a functionality of soluble GARP alone. In order to clarify the underlying molecular mechanism, we expressed and purified recombinant TGFß and a soluble variant of GARP. Surprisingly, soluble GARP and TGFß formed stable non-covalent complexes in addition to disulfide-coupled complexes, depending on the redox conditions of the microenvironment. We also show that soluble GARP alone and the two variants of complexes mediate different levels of TGFß activity. TGFß activation is enhanced by the non-covalent GARP-TGFß complex already at low (nanomolar) concentrations, at which GARP alone does not show any effect. This supports the idea of soluble GARP acting as immune modulator in vivo.


Subject(s)
Cell Proliferation , Membrane Proteins/metabolism , Recombinant Proteins/metabolism , Transforming Growth Factor beta/metabolism , Circular Dichroism , Cloning, Molecular , HEK293 Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Transforming Growth Factor beta/chemistry , Transforming Growth Factor beta/genetics
15.
Curr Protoc Protein Sci ; 83: 21.16.1-21.16.20, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26836407

ABSTRACT

Substrate cleavage by metalloproteinases involves nucleophilic attack on the scissile peptide bond by a water molecule that is polarized by a catalytic metal, usually a zinc ion, and a general base, usually the carboxyl group of a glutamic acid side chain. The zinc ion is most often complexed by imidazole nitrogens of histidine side chains. This arrangement suggests that the physiological pH optimum of most metalloproteinases is in the neutral range. In addition to their catalytic metal ion, many metalloproteinases contain additional transition metal or alkaline earth ions, which are structurally important or modulate the catalytic activity. As a consequence, these enzymes are generally sensitive to metal chelators. Moreover, the catalytic metal can be displaced by adventitious metal ions from buffers or biological fluids, which may fundamentally alter the catalytic function. Therefore, handling, purification, and assaying of metalloproteinases require specific precautions to warrant their stability.


Subject(s)
Glutamic Acid/chemistry , Metalloproteases/chemistry , Zinc/chemistry , Animals , Catalysis , Glutamic Acid/metabolism , Humans , Hydrogen-Ion Concentration , Metalloproteases/metabolism , Zinc/metabolism
16.
FASEB J ; 29(5): 1973-85, 2015 May.
Article in English | MEDLINE | ID: mdl-25634959

ABSTRACT

Human Taspase1 is essential for development and cancer by processing critical regulators, such as the mixed-lineage leukemia protein. Likewise, its ortholog, trithorax, is cleaved by Drosophila Taspase1 (dTaspase1), implementing a functional coevolution. To uncover novel mechanism regulating protease function, we performed a functional analysis of dTaspase1 and its comparison to the human ortholog. dTaspase1 contains an essential nucleophile threonine(195), catalyzing cis cleavage into its α- and ß-subunits. A cell-based assay combined with alanine scanning mutagenesis demonstrated that the target cleavage motif for dTaspase1 (Q(3)[F/I/L/M](2)D(1)↓G(1')X(2')X(3')) differs significantly from the human ortholog (Q(3)[F,I,L,V](2)D(1)↓G(1')x(2')D(3')D(4')), predicting an enlarged degradome containing 70 substrates for Drosophila. In contrast to human Taspase1, dTaspase1 shows no discrete localization to the nucleus/nucleolus due to the lack of the importin-α/nucleophosmin1 interaction domain (NoLS) conserved in all vertebrates. Consequently, dTaspase1 interacts with neither the Drosophila nucleoplasmin-like protein nor human nucleophosmin1. The impact of localization on the protease's degradome was confirmed by demonstrating that dTaspase1 did not efficiently process nuclear substrates, such as upstream stimulatory factor 2. However, genetic introduction of the NoLS into dTaspase1 restored its nucleolar localization, nucleophosmin1 interaction, and efficient cleavage of nuclear substrates. We report that evolutionary functional divergence separating vertebrates from invertebrates can be achieved for proteases by a transport/localization-regulated mechanism.


Subject(s)
Biological Evolution , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Drosophila Proteins/metabolism , Drosophila/metabolism , Endopeptidases/metabolism , Peptide Hydrolases/metabolism , Amino Acid Sequence , Animals , Blotting, Western , Cells, Cultured , Drosophila/growth & development , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Male , Microscopy, Confocal , Molecular Sequence Data , Mutagenesis, Site-Directed , Phylogeny , Protein Transport , Proteolysis , Sequence Homology, Amino Acid , Signal Transduction
17.
Biol Chem ; 395(10): 1195-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25205729

ABSTRACT

The zona pellucida, a glycoprotein matrix surrounding the mammalian oocyte, hardens after intrusion of the first spermatozoon, thus protecting the embryo until implantation and preventing multiple fertilizations (polyspermy). Definitive zona hardening is mediated by the metalloprotease ovastacin, which is released from cortical granules of the oocyte upon sperm penetration. However, traces of ovastacin seep from unfertilized eggs to cause zona hardening even in the absence of sperm. These small amounts of protease are inactivated by the plasma protein fetuin-B, thus keeping eggs fertilizable. Once a sperm has penetrated the egg, ovastacin from cortical vesicles overrides fetuin-B and initiates zona hardening.


Subject(s)
Fetuin-B/physiology , Germ Cells/physiology , Metalloproteases/antagonists & inhibitors , Animals , Female , Fertility , Fertilization , Humans , Pregnancy , Sperm-Ovum Interactions
18.
Dev Cell ; 25(1): 106-12, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23562279

ABSTRACT

The zona pellucida (ZP) is a glycoprotein matrix surrounding mammalian oocytes. Upon fertilization, ZP hardening prevents sperm from binding to and penetrating the ZP. Here, we report that targeted gene deletion of the liver-derived plasma protein fetuin-B causes premature ZP hardening and, consequently, female infertility. Transplanting fetuin-B-deficient ovaries into wild-type recipients restores fertility, indicating that plasma fetuin-B is necessary and sufficient for fertilization. In vitro fertilization of oocytes from fetuin-B-deficient mice only worked after rendering the ZP penetrable by laser perforation. Mechanistically, fetuin-B sustains fertility by inhibiting ovastacin, a cortical granula protease known to trigger ZP hardening. Thus, plasma fetuin-B is necessary to restrain protease activity and thereby maintain ZP permeability until after gamete fusion. These results also show that premature ZP hardening can cause infertility in mice.


Subject(s)
Fertilization , Fetuin-B/metabolism , Gene Expression Regulation, Developmental , Zona Pellucida/pathology , Animals , Cell Membrane Permeability , Embryo Transfer/methods , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Enzyme Activation , Female , Fertilization in Vitro , Fetuin-B/genetics , Infertility, Female/metabolism , Infertility, Female/pathology , Male , Metalloproteases/antagonists & inhibitors , Metalloproteases/genetics , Metalloproteases/metabolism , Mice , Mice, Inbred C57BL , Oocytes/metabolism , Oocytes/pathology , Ovary/metabolism , Ovary/transplantation , Pregnancy , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Spermatozoa/metabolism , Spermatozoa/physiology , Zona Pellucida/drug effects , Zona Pellucida/metabolism
19.
FEBS Lett ; 586(24): 4264-9, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23123160

ABSTRACT

Meprin α and ß, members of the astacin family of zinc metalloproteinases, are unique plasma membrane and secreted proteases known to cleave a wide range of biological substrates involved in inflammation, cancer and fibrosis. In this study, we identified proMMP-9 as a novel substrate and show that aminoterminal meprin-mediated clipping improves the activation kinetics of proMMP-9 by MMP-3, an efficient activator of proMMP-9. Interestingly, the NH(2)-terminus LVLFPGDL, generated by incubation with meprin α, is identical to the form produced in conditioned media from human neutrophils and monocytes. Hence, this meprin-mediated processing and enhancement of MMP-9 activation kinetics may have biological relevance in the context of in vivo inflammatory processes.


Subject(s)
Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 9/metabolism , Tiopronin/metabolism , Amino Acid Sequence , Cells, Cultured/metabolism , Culture Media, Conditioned , Humans , Molecular Sequence Data , Monocytes/metabolism , Neutrophils/metabolism
20.
Biol Chem ; 393(10): 1027-41, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23092796

ABSTRACT

The astacins are a family of multi-domain metallopeptidases with manifold functions in metabolism. They are either secreted or membrane-anchored and are regulated by being synthesized as inactive zymogens and also by co-localizing protein inhibitors. The distinct family members consist of N-terminal signal peptides and pro-segments, zinc-dependent catalytic domains, further downstream extracellular domains, transmembrane anchors, and cytosolic domains. The catalytic domains of four astacins and the zymogen of one of these have been structurally characterized and shown to comprise compact ~200-residue zinc-dependent moieties divided into an N-terminal and a C-terminal sub-domain by an active-site cleft. Astacins include an extended zinc-binding motif (HEXXHXXGXXH) which includes three metal ligands and groups them into the metzincin clan of metallopeptidases. In mature, unbound astacins, a conserved tyrosine acts as an additional zinc ligand, which is swung out upon substrate or inhibitor binding in a 'tyrosine switch' motion. Other characteristic structural elements of astacin catalytic domains are three large α-helices and a five-stranded ß-sheet, as well as two or three disulfide bonds. The N-terminal pro-segments are variable in length and rather unstructured. They inhibit the catalytic zinc following an 'aspartate-switch' mechanism mediated by an aspartate embedded in a conserved motif (FXGD). Removal of the pro-segment uncovers a deep and extended active-site cleft, which in general shows preference for aspartate residues in the specificity pocket (S1'). Furthermore, astacins undergo major rearrangement upon activation within an 'activation domain,' and show a slight hinge movement when binding substrates or inhibitors. In this review, we discuss the overall architecture of astacin catalytic domains and their involvement in function and zymogenic activation.


Subject(s)
Metalloendopeptidases/chemistry , Metalloendopeptidases/metabolism , Amino Acid Sequence , Animals , Enzyme Activation , Enzyme Precursors/antagonists & inhibitors , Enzyme Precursors/chemistry , Enzyme Precursors/metabolism , Evolution, Molecular , Humans , Metalloendopeptidases/antagonists & inhibitors , Molecular Sequence Data , Protease Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...