Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 1739, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38242973

ABSTRACT

The market approval of Tazemetostat (TAZVERIK) for the treatment of follicular lymphoma and epithelioid sarcoma has established "enhancer of zeste homolog 2" (EZH2) as therapeutic target in oncology. Despite their structural similarities and common mode of inhibition, Tazemetostat and other EZH2 inhibitors display differentiated pharmacological profiles based on their target residence time. Here we established high throughput screening methods based on time-resolved fluorescence energy transfer, scintillation proximity and high content analysis microscopy to quantify the biochemical and cellular binding of a chemically diverse collection of EZH2 inhibitors. These assays allowed to further characterize the interplay between EZH2 allosteric modulation by methylated histone tails (H3K27me3) and inhibitor binding, and to evaluate the impact of EZH2's clinically relevant mutant Y641N on drug target residence times. While all compounds in this study exhibited slower off-rates, those with clinical candidate status display significantly slower target residence times in wild type EZH2 and disease-related mutants. These inhibitors interact in a more entropy-driven fashion and show the most persistent effects in cellular washout and antiproliferative efficacy experiments. Our work provides mechanistic insights for the largest cohort of EZH2 inhibitors reported to date, demonstrating that-among several other binding parameters-target residence time is the best predictor of cellular efficacy.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Pyridones , Humans , Benzamides , Biphenyl Compounds , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Morpholines , Pyridones/therapeutic use
2.
J Med Chem ; 63(15): 8025-8042, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32338514

ABSTRACT

Inhibition of monopolar spindle 1 (MPS1) kinase represents a novel approach to cancer treatment: instead of arresting the cell cycle in tumor cells, cells are driven into mitosis irrespective of DNA damage and unattached/misattached chromosomes, resulting in aneuploidy and cell death. Starting points for our optimization efforts with the goal to identify MPS1 inhibitors were two HTS hits from the distinct chemical series "triazolopyridines" and "imidazopyrazines". The major initial issue of the triazolopyridine series was the moderate potency of the HTS hits. The imidazopyrazine series displayed more than 10-fold higher potencies; however, in the early project phase, this series suffered from poor metabolic stability. Here, we outline the evolution of the two hit series to clinical candidates BAY 1161909 and BAY 1217389 and reveal how both clinical candidates bind to the ATP site of MPS1 kinase, while addressing different pockets utilizing different binding interactions, along with their synthesis and preclinical characterization in selected in vivo efficacy models.


Subject(s)
Antineoplastic Agents/metabolism , Cell Cycle Proteins/metabolism , Drug Delivery Systems/methods , Drug Discovery/methods , M Phase Cell Cycle Checkpoints/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Spindle Apparatus/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Dogs , Female , HT29 Cells , HeLa Cells , Humans , M Phase Cell Cycle Checkpoints/physiology , Male , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Structure, Tertiary , Protein-Tyrosine Kinases/antagonists & inhibitors , Rats , Rats, Wistar , Spindle Apparatus/metabolism , Treatment Outcome
3.
J Med Chem ; 63(2): 601-612, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31859507

ABSTRACT

The serine/threonine kinase TBK1 (TANK-binding kinase 1) and its homologue IKKε are noncanonical members of the inhibitor of the nuclear factor κB (IκB) kinase family. These kinases play important roles in multiple cellular pathways and, in particular, in inflammation. Herein, we describe our investigations on a family of benzimidazoles and the identification of the potent and highly selective TBK1/IKKε inhibitor BAY-985. BAY-985 inhibits the cellular phosphorylation of interferon regulatory factor 3 and displays antiproliferative efficacy in the melanoma cell line SK-MEL-2 but showed only weak antitumor activity in the SK-MEL-2 human melanoma xenograft model.


Subject(s)
I-kappa B Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Discovery , High-Throughput Screening Assays , Humans , Models, Molecular , Phosphorylation , Structure-Activity Relationship , Substrate Specificity
4.
ACS Chem Biol ; 12(11): 2730-2736, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29043777

ABSTRACT

ATAD2 (ANCCA) is an epigenetic regulator and transcriptional cofactor, whose overexpression has been linked to the progress of various cancer types. Here, we report a DNA-encoded library screen leading to the discovery of BAY-850, a potent and isoform selective inhibitor that specifically induces ATAD2 bromodomain dimerization and prevents interactions with acetylated histones in vitro, as well as with chromatin in cells. These features qualify BAY-850 as a chemical probe to explore ATAD2 biology.


Subject(s)
ATPases Associated with Diverse Cellular Activities/antagonists & inhibitors , ATPases Associated with Diverse Cellular Activities/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Molecular Probes/chemistry , Molecular Probes/pharmacology , Protein Interaction Maps/drug effects , Protein Multimerization/drug effects , ATPases Associated with Diverse Cellular Activities/chemistry , Cell Line, Tumor , Chromatin/metabolism , DNA-Binding Proteins/chemistry , Drug Discovery , Histones/metabolism , Humans , Ligands , Models, Molecular , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/metabolism
5.
J Med Chem ; 60(9): 4002-4022, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28402630

ABSTRACT

Bromodomains (BD) are readers of lysine acetylation marks present in numerous proteins associated with chromatin. Here we describe a dual inhibitor of the bromodomain and PHD finger (BRPF) family member BRPF2 and the TATA box binding protein-associated factors TAF1 and TAF1L. These proteins are found in large chromatin complexes and play important roles in transcription regulation. The substituted benzoisoquinolinedione series was identified by high-throughput screening, and subsequent structure-activity relationship optimization allowed generation of low nanomolar BRPF2 BD inhibitors with strong selectivity against BRPF1 and BRPF3 BDs. In addition, a strong inhibition of TAF1/TAF1L BD2 was measured for most derivatives. The best compound of the series was BAY-299, which is a very potent, dual inhibitor with an IC50 of 67 nM for BRPF2 BD, 8 nM for TAF1 BD2, and 106 nM for TAF1L BD2. Importantly, no activity was measured for BRD4 BDs. Furthermore, cellular activity was evidenced using a BRPF2- or TAF1-histone H3.3 or H4 interaction assay.


Subject(s)
Histone Acetyltransferases/antagonists & inhibitors , Isoquinolines/pharmacology , Nuclear Proteins/antagonists & inhibitors , TATA-Binding Protein Associated Factors/antagonists & inhibitors , Transcription Factor TFIID/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Histone Chaperones , Humans , Isomerism , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Microsomes, Liver/drug effects , Molecular Structure , Structure-Activity Relationship
6.
J Med Chem ; 59(10): 4578-600, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27075367

ABSTRACT

Protein lysine methyltransferases have recently emerged as a new target class for the development of inhibitors that modulate gene transcription or signaling pathways. SET and MYND domain containing protein 2 (SMYD2) is a catalytic SET domain containing methyltransferase reported to monomethylate lysine residues on histone and nonhistone proteins. Although several studies have uncovered an important role of SMYD2 in promoting cancer by protein methylation, the biology of SMYD2 is far from being fully understood. Utilization of highly potent and selective chemical probes for target validation has emerged as a concept which circumvents possible limitations of knockdown experiments and, in particular, could result in an improved exploration of drug targets with a complex underlying biology. Here, we report the development of a potent, selective, and cell-active, substrate-competitive inhibitor of SMYD2, which is the first reported inhibitor suitable for in vivo target validation studies in rodents.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Pyridazines/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , HEK293 Cells , Histone-Lysine N-Methyltransferase/metabolism , Humans , Models, Molecular , Molecular Structure , Pyridazines/chemical synthesis , Pyridazines/chemistry , Structure-Activity Relationship , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism
7.
Neurotox Res ; 22(2): 91-101, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22190114

ABSTRACT

Since peripheral sensory neuropathy is the major, clinically relevant side effect of sagopilone we investigated the general and peripheral neurotoxicity of sagopilone administered intravenously with different doses (1.2 and 2.4 mg/kg) and schedules in 48 Wistar rats and we performed in parallel a pharmacokinetic/pharmacodynamic (PK/PD) study. A trend toward a different peripheral neurotoxicity could be assessed after 2 weeks of treatment (bolus > 30-min infusion > 3-h infusion) with both doses of sagopilone. Although sagopilone concentrations in peripheral nerve tissue above 100 ng/g were associated with a reduction in nerve conduction velocity (NCV), a clear dose-dependence of this reduction on the level of systemic exposure to sagopilone was not observed. The PK/PD evaluation revealed no consistent effect of the infusion duration on serum PK parameters or the PD read-out NCV. Sagopilone concentrations in brain, sciatic nerve, liver, and kidney were higher after bolus compared to infusion, but there were no influence of infusion duration on these concentrations. No correlation between sagopilone concentrations in any organ/tissue with NCV changes was detected. This study evidences that the PD of sagopilone is not the main determinant of the onset and severity of sagopilone-induced peripheral neurotoxicity in the investigated clinically-relevant dose range, thus indicating that further investigation might identify neuronal-specific mechanisms of action able to drive a focused strategy to prevent peripheral neurotoxicity without reducing the anticancer effectiveness of the epothilones.


Subject(s)
Benzothiazoles/toxicity , Epothilones/toxicity , Neurotoxicity Syndromes/pathology , Peripheral Nervous System Diseases/chemically induced , Animals , Area Under Curve , Benzothiazoles/pharmacokinetics , Blood Cell Count , Blood Chemical Analysis , Body Weight/drug effects , Data Interpretation, Statistical , Epothilones/pharmacokinetics , Female , Infusions, Intravenous , Kidney/pathology , Liver/pathology , Neural Conduction/drug effects , Peripheral Nervous System Diseases/pathology , Rats , Rats, Wistar , Sciatic Nerve/pathology
8.
Mol Nutr Food Res ; 50(4-5): 345-50, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16598805

ABSTRACT

In the past flavor research and the development of new flavorings were constantly driven by the interaction of flavor analysis, structure elucidation, and chemical synthesis accompanied by sensory. Highly potent flavor compounds were identified in numerous food products and helped to establish a powerful toolbox for flavorists. Nowadays we experience the merging of various scientific disciplines, for example medicine, biology, chemistry, and various technologies in the field of flavor research, which shows direct impact on our understanding of flavors. At the same time modern life has profoundly changed our eating habits. This situation generates new challenges for product development teams, which represent all facets of technologies. This paper will illustrate different examples for the evolution of product-oriented flavor research and future trends.


Subject(s)
Flavoring Agents , Food Analysis , Research/trends , Taste , Caffeine/analysis , Flavoring Agents/analysis , Flavoring Agents/chemistry , Food Contamination/analysis , Fragaria/chemistry , Fruit/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Rosaceae/chemistry , Spectrum Analysis, Raman , Stereoisomerism , Volatilization
9.
J Agric Food Chem ; 54(2): 274-8, 2006 Jan 25.
Article in English | MEDLINE | ID: mdl-16417279

ABSTRACT

Liquid chromatography/mass spectrometry and liquid chromatography/nuclear magnetic resonance techniques with ultraviolet/diode array detection were used as complementary analytical tools for the reliable identification of polymethoxylated flavones in residues from molecular distillation of cold-pressed peel oils of Citrus sinensis. After development of a liquid chromatographic separation procedure, the presence of several polymethoxy flavones such as sinensetin, nobiletin, tangeretin, quercetogetin, heptamethoxyflavone, and other derivatives was unambiguously confirmed. In addition, proceranone, an acetylated tetranortriterpenoid with limonoid structure, was identified for the first time in citrus.


Subject(s)
Chromatography, High Pressure Liquid/methods , Citrus sinensis/chemistry , Flavones/analysis , Magnetic Resonance Spectroscopy , Mass Spectrometry , Plant Oils/chemistry , Flavones/chemistry , Fruit/chemistry , Gas Chromatography-Mass Spectrometry
10.
J Chromatogr A ; 967(1): 85-113, 2002 Aug 16.
Article in English | MEDLINE | ID: mdl-12219932

ABSTRACT

Systems for efficient separation of selected alkaloid groups by high performance liquid chromatography (HPLC), capillary electrophoresis (CE) and capillary electrophoresis coupled with electrospray ionisation mass spectrometry (CE-ESI-MS) are described. The optimized HPLC system was applied for the separation of 23 standard indole alkaloids as well as for qualitative and quantitative analyses of crude alkaloid extracts of Rauvolfia serpentina X Rhazya stricta hybrid cell cultures. The developed conditions for CE analysis proved to be efficient for separation of mixtures of standard indole and beta-carboline alkaloids. The described buffer system is also applicable in the combination of CE with electrospray ionisation mass spectrometry. This analytical technique allowed the separation and identification of components of standard indole alkaloid mixture as well as crude extracts of R. serpentina roots, R. serpentina cell suspension cultures and cortex of Aspidosperma quebracho-blanco. The influence of buffer composition and analyte structures on separation is discussed.


Subject(s)
Alkaloids/analysis , Chromatography, High Pressure Liquid/methods , Electrophoresis, Capillary/methods , Spectrometry, Mass, Electrospray Ionization/methods , Alkaloids/chemistry , Molecular Structure
11.
Angew Chem Int Ed Engl ; 38(12): 1758-1761, 1999 Jun 14.
Article in English | MEDLINE | ID: mdl-29711209

ABSTRACT

About 1000 catalytic or stoichiometric asymmetric reactions of racemic compounds or prochiral substrates bearing enantiotopic groups can be analyzed per day. In this highly efficient method the enantioselectivity is determined by electrospray ionization mass spectrometry using isotopically labeled substrates. The picture shows the mass spectrum of the mixture obtained upon hydrolysis of 1 to afford the pseudo-enantiomeric products 2 and 3.

SELECTION OF CITATIONS
SEARCH DETAIL
...