Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38747693

ABSTRACT

The use of algae as feedstock for industrial purposes, such as in bioethanol production, is desirable. During a search for new agarolytic marine bacteria, a novel Gram-stain-negative, strictly aerobic, and agarolytic bacterium, designated as TS8T, was isolated from algae in the harbour of the island of Susak, Croatia. The cells were rod-shaped and motile. The G+C content of the sequenced genome was 38.6 mol%. Growth was observed at 11-37 °C, with 0.5-13 % (w/v) NaCl, and at pH 6.0-9.0. The main fatty acids were summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), and C16 : 0. The main respiratory quinone was ubiquinone-8. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. Analysis of 16S rRNA gene sequences indicated that the newly isolated strain belongs to the genus Catenovulum. Based on 16S rRNA gene sequence data, strain TS8T is closely related to Catenovulum sediminis D2T (95.7 %), Catenovulum agarivorans YM01T (95.0 %), and Catenovulum maritimum Q1T (93.2 %). Digital DNA-DNA hybridization values between TS8T and the other Catenovulum strains were below 25 %. Based on genotypic, phenotypic, and phylogenetic data, strain TS8T represents a new species of the genus Catenovulum, for which the name Catenovulum adriaticum sp. nov. is proposed. The type strain is TS8T (=DSM 114830T=NCIMB 15451T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Ubiquinone , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , Fatty Acids/chemistry , Croatia , DNA, Bacterial/genetics , Phospholipids/chemistry , Phospholipids/analysis , Nucleic Acid Hybridization , Phosphatidylethanolamines
2.
Microorganisms ; 11(3)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36985357

ABSTRACT

1,3-propanediol (1,3-PDO) is a valuable basic chemical, especially in the polymer industry to produce polytrimethylene terephthalate. Unfortunately, the production of 1,3-PDO mainly depends on petroleum products as precursors. Furthermore, the chemical routes have significant disadvantages, such as environmental issues. An alternative is the biobased fermentation of 1,3-PDO from cheap glycerol. Clostridium beijerinckii DSM 6423 was originally reported to produce 1,3-PDO. However, this could not be confirmed, and a genome analysis revealed the loss of an essential gene. Thus, 1,3-PDO production was genetically reinstalled. Genes for 1,3-PDO production from Clostridium pasteurianum DSM 525 and Clostridium beijerinckii DSM 15410 (formerly Clostridium diolis) were introduced into C. beijerinckii DSM 6423 to enable 1,3-PDO production from glycerol. 1,3-PDO production by recombinant C. beijerinckii strains were investigated under different growth conditions. 1,3-PDO production was only observed for C. beijerinckii [pMTL83251_Ppta-ack_1,3-PDO.diolis], which harbors the genes of C. beijerinckii DSM 15410. By buffering the growth medium, production could be increased by 74%. Furthermore, the effect of four different promoters was analyzed. The use of the constitutive thlA promoter from Clostridium acetobutylicum led to a 167% increase in 1,3-PDO production compared to the initial recombinant approach.

3.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Article in English | MEDLINE | ID: mdl-36269567

ABSTRACT

Clostridium aurantibutyricum, Clostridium felsineum and Clostridium roseum share a very high similarity based on multi-locus sequence analysis. In this study, their correct taxonomic status was determined using genomic and phenotypic investigations. Average nucleotide identity based on MUMmer alignment of the genomes and in silico DNA-DNA hybridization resulted in values of 98.55-100 and 78.7-100 %, respectively, strongly indicating that all strains are members of the same species. In addition, morphological investigations, fatty acid analyses and substrate utilization tests revealed no striking differences between the strains. Therefore, we propose the reclassification of C. aurantibutyricum and C. roseum as later heterotypic synonyms of C. felsineum. The type strain is lodged in several culture collections (ATCC 17788T=DSM 794T=NCIMB 10690T).


Subject(s)
Fatty Acids , Nucleotides , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques , Phylogeny , Base Composition , Fatty Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...