Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 9(7): 3906-3915, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29972203

ABSTRACT

Advanced glycation end products (AGEs) are frequently encountered in a western diet, in addition to their formation in vivo. N-Epsilon-carboxymethyllysine (CML), one of the chemically diverse compounds formed in the reaction between reducing carbohydrates and amines, is often used as a marker of advanced glycation, and has been shown to stimulate serotonin release from cells representing the central (SH-SY5Y cells) and the peripheral (Caco-2 cells) serotonin system in vitro. Here, we investigated the effect of glyoxal, free CML, and protein-linked AGE-BSA on serotonin release from human gastric tumour cells, which originate from an adenocarcinoma of the stomach and have recently been shown to be capable of serotonin synthesis and release. Microarray experiments showed both CML and glyoxal to alter genes associated with serotonin receptors. Furthermore, treatment with glyoxal resulted in a small change in RAGE expression while CML did not alter its expression. On a functional level, treatment with 500 µM CML increased extracellular serotonin content by 341 ± 241%, while treatment with 1 mg mL-1 AGE-BSA led to a reduction by 49 ± 11% compared to non-treated cells. The CML-induced serotonin release was reduced by the HTR3 antagonist granisetron. Incubation with the RAGE antagonist FPS-ZM1 abolished the effect of AGE-BSA on serotonin release, while no impact on CML-induced serotonin release was observed. Furthermore, treatment with 5 mM CML stimulated proton secretion as a functional outcome measure, assessed using a pH sensitive dye. Taken together, these results indicate a likely HTR3-mediated, RAGE-independent effect of free CML on serotonin release and a RAGE-dependent mechanism for the protein linked AGE-BSA.


Subject(s)
Glycation End Products, Advanced/metabolism , Glyoxal/pharmacology , Lysine/analogs & derivatives , Serotonin/metabolism , Serum Albumin, Bovine/metabolism , Caco-2 Cells , Gene Expression Regulation/drug effects , Humans , Lysine/pharmacology , Maillard Reaction , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism
2.
Mol Nutr Food Res ; 61(12)2017 12.
Article in English | MEDLINE | ID: mdl-28834253

ABSTRACT

SCOPE: Anorexia of aging, characterized by a decrease in appetite and/or food intake, is a major risk factor of under-nutrition and adverse health outcomes in elderly people. Recent in vitro evidence suggests homoeriodictyol (HED), a naturally occurring, bitter-masking flavanone, as a promising agent to increase appetite and food intake. METHODS AND RESULTS: In two cross-over intervention trials, 30 mg NaHED, either solely (n = 10, Study I) or in combination with a 75 g glucose load (n = 17, study II) were administered to healthy adult subjects. Ratings of hunger were assessed at fasting and either 30 min (Study I) or 120 min (Study II) post intervention. Ad libitum energy intake from a standardized breakfast and plasma changes in hunger-/satiety-associated hormones PYY, GLP-1, ghrelin and serotonin were determined after blood drawings. Effects were more pronounced when NaHED was administered in combination with 75 g glucose since ad libitum energy (+ 9.52 ± 4.60%) and protein (+ 7.08 ± 7.97%) intake as well as plasma ΔAUC ghrelin values increased in study II solely, whereas plasma serotonin concentrations decreased after both interventions. CONCLUSIONS: NaHED demonstrated appetizing effects in healthy adults when administered with a glucose load. Long-term intervention studies are warranted to verify these effects in compromised subjects.


Subject(s)
Appetite Stimulants/pharmacology , Flavones/pharmacology , Adult , Blood Glucose/analysis , Breakfast , Eating/drug effects , Female , Flavones/blood , Ghrelin/blood , Glucagon-Like Peptide 1/blood , Glucose Tolerance Test , Humans , Hunger , Male , Peptide YY/blood , Postprandial Period , Serotonin/blood
3.
Proc Natl Acad Sci U S A ; 114(30): E6260-E6269, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28696284

ABSTRACT

Caffeine, generally known as a stimulant of gastric acid secretion (GAS), is a bitter-tasting compound that activates several taste type 2 bitter receptors (TAS2Rs). TAS2Rs are expressed in the mouth and in several extraoral sites, e.g., in the gastrointestinal tract, in which their functional role still needs to be clarified. We hypothesized that caffeine evokes effects on GAS by activation of oral and gastric TAS2Rs and demonstrate that caffeine, when administered encapsulated, stimulates GAS, whereas oral administration of a caffeine solution delays GAS in healthy human subjects. Correlation analysis of data obtained from ingestion of the caffeine solution revealed an association between the magnitude of the GAS response and the perceived bitterness, suggesting a functional role of oral TAS2Rs in GAS. Expression of TAS2Rs, including cognate TAS2Rs for caffeine, was shown in human gastric epithelial cells of the corpus/fundus and in HGT-1 cells, a model for the study of GAS. In HGT-1 cells, various bitter compounds as well as caffeine stimulated proton secretion, whereby the caffeine-evoked effect was (i) shown to depend on one of its cognate receptor, TAS2R43, and adenylyl cyclase; and (ii) reduced by homoeriodictyol (HED), a known inhibitor of caffeine's bitter taste. This inhibitory effect of HED on caffeine-induced GAS was verified in healthy human subjects. These findings (i) demonstrate that bitter taste receptors in the stomach and the oral cavity are involved in the regulation of GAS and (ii) suggest that bitter tastants and bitter-masking compounds could be potentially useful therapeutics to regulate gastric pH.


Subject(s)
Caffeine/pharmacology , Gastric Acid/metabolism , Parietal Cells, Gastric/physiology , Flavones/pharmacology , Humans , Parietal Cells, Gastric/metabolism , Receptors, G-Protein-Coupled/physiology , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...