Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 6517, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34764290

ABSTRACT

Catalytic hydrogen oxidation on a polycrystalline rhodium foil used as a surface structure library is studied by scanning photoelectron microscopy (SPEM) in the 10-6 mbar pressure range, yielding spatially resolved X-ray photoemission spectroscopy (XPS) measurements. Here we report an observation of a previously unknown coexistence of four different states on adjacent differently oriented domains of the same Rh sample at the exactly same conditions. A catalytically active steady state, a catalytically inactive steady state and multifrequential oscillating states are simultaneously observed. Our results thus demonstrate the general possibility of multi-states in a catalytic reaction. This highly unusual behaviour is explained on the basis of peculiarities of the formation and depletion of subsurface oxygen on differently structured Rh surfaces. The experimental findings are supported by mean-field micro-kinetic modelling. The present observations raise the interdisciplinary question of how self-organising dynamic processes in a heterogeneous system are influenced by the permeability of the borders confining the adjacent regions.

2.
Science ; 372(6548): 1314-1318, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34016741

ABSTRACT

In heterogeneous catalysis research, the reactivity of individual nanofacets of single particles is typically not resolved. We applied in situ field electron microscopy to the apex of a curved rhodium crystal (radius of 650 nanometers), providing high spatial (~2 nanometers) and time resolution (~2 milliseconds) of oscillatory catalytic hydrogen oxidation, to image adsorbed species and reaction fronts on the individual facets. Using ionized water as the imaging species, the active sites were directly imaged with field ion microscopy. The catalytic behavior of differently structured nanofacets and the extent of coupling between them were monitored individually. We observed limited interfacet coupling, entrainment, frequency locking, and reconstruction-induced collapse of spatial coupling. The experimental results are backed up by microkinetic modeling of time-dependent oxygen species coverages and oscillation frequencies.

3.
Nat Commun ; 12(1): 69, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33398022

ABSTRACT

Scanning photoelectron microscopy (SPEM) and photoemission electron microscopy (PEEM) allow local surface analysis and visualising ongoing reactions on a µm-scale. These two spatio-temporal imaging methods are applied to polycrystalline Rh, representing a library of well-defined high-Miller-index surface structures. The combination of these techniques enables revealing the anisotropy of surface oxidation, as well as its effect on catalytic hydrogen oxidation. In the present work we observe, using locally-resolved SPEM, structure-sensitive surface oxide formation, which is summarised in an oxidation map and quantitatively explained by the novel step density (SDP) and step edge (SEP) parameters. In situ PEEM imaging of ongoing H2 oxidation allows a direct comparison of the local reactivity of metallic and oxidised Rh surfaces for the very same different stepped surface structures, demonstrating the effect of Rh surface oxides. Employing the velocity of propagating reaction fronts as indicator of surface reactivity, we observe a high transient activity of Rh surface oxide in H2 oxidation. The corresponding velocity map reveals the structure-dependence of such activity, representing a direct imaging of a structure-activity relation for plenty of well-defined surface structures within one sample.

4.
Nature ; 576(7785): 85-90, 2019 12.
Article in English | MEDLINE | ID: mdl-31723266

ABSTRACT

Thermoelectric materials transform a thermal gradient into electricity. The efficiency of this process relies on three material-dependent parameters: the Seebeck coefficient, the electrical resistivity and the thermal conductivity, summarized in the thermoelectric figure of merit. A large figure of merit is beneficial for potential applications such as thermoelectric generators. Here we report the thermal and electronic properties of thin-film Heusler alloys based on Fe2V0.8W0.2Al prepared by magnetron sputtering. Density functional theory calculations suggest that the thin films are metastable states, and measurements of the power factor-the ratio of the Seebeck coefficient squared divided by the electrical resistivity-suggest a high intrinsic figure of merit for these thin films. This may arise from a large differential density of states at the Fermi level and a Weyl-like electron dispersion close to the Fermi level, which indicates a high mobility of charge carriers owing to linear crossing in the electronic bands.

5.
Nano Lett ; 19(6): 3892-3897, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31117757

ABSTRACT

The band offsets occurring at the abrupt heterointerfaces of suitable material combinations offer a powerful design tool for high performance or even new kinds of devices. Because of a large variety of applications for metal-semiconductor heterostructures and the promise of low-dimensional systems to present exceptional device characteristics, nanowire heterostructures gained particular interest over the past decade. However, compared to those achieved by mature two-dimensional processing techniques, quasi one-dimensional (1D) heterostructures often suffer from low interface and crystalline quality. For the GaAs-Au system, we demonstrate exemplarily a new approach to generate epitaxial and single crystalline metal-semiconductor nanowire heterostructures with atomically sharp interfaces using standard semiconductor processing techniques. Spatially resolved Raman measurements exclude any significant strain at the lattice mismatched metal-semiconductor heterojunction. On the basis of experimental results and simulation work, a novel self-assembled mechanism is demonstrated which yields one-step reconfiguration of a semiconductor-metal core-shell nanowire to a quasi 1D axially stacked heterostructure via flash lamp annealing. Transmission electron microscopy imaging and electrical characterization confirm the high interface quality resulting in the lowest Schottky barrier for the GaAs-Au system reported to date. Without limiting the generality, this novel approach will open up new opportunities in the syntheses of other metal-semiconductor nanowire heterostructures and thus facilitate the research of high-quality interfaces in metal-semiconductor nanocontacts.

6.
Sci Rep ; 9(1): 4004, 2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30850673

ABSTRACT

We present an experimental and theoretical study of Babinet's principle of complementarity in plasmonics. We have used spatially-resolved electron energy loss spectroscopy and cathodoluminescence to investigate electromagnetic response of elementary plasmonic antenna: gold discs and complementary disc-shaped apertures in a gold layer. We have also calculated their response to the plane wave illumination. While the qualitative validity of Babinet's principle has been confirmed, quantitative differences have been found related to the energy and quality factor of the resonances and the magnitude of related near fields. In particular, apertures were found to exhibit stronger interaction with the electron beam than solid antennas, which makes them a remarkable alternative of the usual plasmonic-antennas design. We also examine the possibility of magnetic near field imaging based on the Babinet's principle.

7.
Ultramicroscopy ; 179: 15-23, 2017 08.
Article in English | MEDLINE | ID: mdl-28364683

ABSTRACT

We discuss the feasibility of detecting spin polarized electronic transitions with a vortex filter. This approach does not rely on the principal condition of the standard electron energy-loss magnetic chiral dichroism (EMCD) technique, the precise alignment of the crystal in order to use it as a beam splitter, and thus would pave the way for the application of EMCD to new classes of materials and problems, like amorphous magnetic alloys and interface magnetism. The dichroic signal strength at the L2, 3-edge of ferromagnetic Cobalt (Co) is estimated on theoretical grounds using a single atom scattering approach. To justify this approach, multi-slice simulations were carried out in order to confirm that orbital angular momentum (OAM) is conserved in amorphous materials over an extended range of sample thickness and also in very thin crystalline specimen, which is necessary for the detection of EMCD. Also artefact sources like spot size, mask tilt and astigmatism are discussed. In addition, the achievable SNR under typical experimental conditions is assessed.

8.
Sci Rep ; 6: 34003, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27666531

ABSTRACT

This work introduces an additive direct-write nanofabrication technique for producing extremely conductive gold nanostructures from a commercial metalorganic precursor. Gold content of 91 atomic % (at. %) was achieved by using water as an oxidative enhancer during direct-write deposition. A model was developed based on the deposition rate and the chemical composition, and it explains the surface processes that lead to the increases in gold purity and deposition yield. Co-injection of an oxidative enhancer enabled Focused Electron Beam Induced Deposition (FEBID)-a maskless, resistless deposition method for three dimensional (3D) nanostructures-to directly yield pure gold in a single process step, without post-deposition purification. Gold nanowires displayed resistivity down to 8.8 µΩ cm. This is the highest conductivity achieved so far from FEBID and it opens the possibility of applications in nanoelectronics, such as direct-write contacts to nanomaterials. The increased gold deposition yield and the ultralow carbon level will facilitate future applications such as the fabrication of 3D nanostructures in nanoplasmonics and biomolecule immobilization.

9.
Catal Letters ; 146(10): 1867-1874, 2016.
Article in English | MEDLINE | ID: mdl-32355436

ABSTRACT

ABSTRACT: The catalytic H2 oxidation reaction on stepped Rh surfaces in the 10-6 mbar pressure range was studied in situ on individual high-Miller-index domains of a polycrystalline Rh foil by PEEM (photoemission electron microscopy) and on a Rh nanotip by FIM/FEM (field-ion/field-emission microscopy). The activity, particularly the tolerance to poisoning by oxygen, was found to strongly depend on the density of steps and defects, as well as on the size of the catalytically active surfaces.

10.
Ultramicroscopy ; 158: 17-25, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26103046

ABSTRACT

Standard electron optics predicts Larmor image rotation in the magnetic lens field of a TEM. Introducing the possibility to produce electron vortex beams with quantized orbital angular momentum brought up the question of their rotational dynamics in the presence of a magnetic field. Recently, it has been shown that electron vortex beams can be prepared as free electron Landau states showing peculiar rotational dynamics, including no and cyclotron (double-Larmor) rotation. Additionally very fast Gouy rotation of electron vortex beams has been observed. In this work a model is developed which reveals that the rotational dynamics of electron vortices are a combination of slow Larmor and fast Gouy rotations and that the Landau states naturally occur in the transition region in between the two regimes. This more general picture is confirmed by experimental data showing an extended set of peculiar rotations, including no, cyclotron, Larmor and rapid Gouy rotations all present in one single convergent electron vortex beam.

11.
Nano Lett ; 15(7): 4783-7, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26052733

ABSTRACT

In this Letter we report on the exploration of axial metal/semiconductor (Al/Ge) nanowire heterostructures with abrupt interfaces. The formation process is enabled by a thermal induced exchange reaction between the vapor-liquid-solid grown Ge nanowire and Al contact pads due to the substantially different diffusion behavior of Ge in Al and vice versa. Temperature-dependent I-V measurements revealed the metallic properties of the crystalline Al nanowire segments with a maximum current carrying capacity of about 0.8 MA/cm(2). Transmission electron microscopy (TEM) characterization has confirmed both the composition and crystalline nature of the pure Al nanowire segments. A very sharp interface between the ⟨111⟩ oriented Ge nanowire and the reacted Al part was observed with a Schottky barrier height of 361 meV. To demonstrate the potential of this approach, a monolithic Al/Ge/Al heterostructure was used to fabricate a novel impact ionization device.

12.
Nat Commun ; 5: 4586, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-25105563

ABSTRACT

Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions.

13.
Ultramicroscopy ; 145: 94-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24529489

ABSTRACT

The present work is a short note on the performance of a conventional transmission electron microscope (TEM) being operated at very low beam energies (below 20keV). We discuss the high tension stability and resolving power of this uncorrected TEM. We find out that the theoretical lens performance can nearly be achieved in practice. We also demonstrate that electron energy loss spectra can be recorded at these low beam energies with standard equipment. The signal-to-noise ratio is sufficiently good for further data treatment like multiple scattering deconvolution and Kramers-Kronig analysis.

14.
Ultramicroscopy ; 145: 98-104, 2014 Oct.
Article in English | MEDLINE | ID: mdl-23927872

ABSTRACT

Using low beam energies in a (scanning) transmission electron microscope (S/TEM) has numerous advantages over higher beam energies. We discuss the performance of commonly available electron microscopes when being operated at reduced beam energies. Further on, we discuss the merits of low beam energies concerning the determination of the optical properties of Si as well as of buried quantum structures. For this purpose we have aligned a conventional S/TEM and the attached energy loss spectrometer for 13keV and 60keV, respectively. Finally we identify the key parameters for setting up a low voltage electron energy loss spectrometry (EELS) experiment.

15.
Ultramicroscopy ; 136: 81-5, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24012939

ABSTRACT

We discuss the feasibility of detecting magnetic transitions with focused electron vortex probes, suggested by selection rules for the magnetic quantum number. We theoretically estimate the dichroic signal strength in the L2,3 edge of ferromagnetic d metals. It is shown that under realistic conditions, the dichroic signal is undetectable for nanoparticles larger than ∼1 nm. This is confirmed by a key experiment with nanometer-sized vortices.

16.
J Phys Chem C Nanomater Interfaces ; 117(23): 12054-12060, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23785524

ABSTRACT

The role of artificially created defects and steps in the local reaction kinetics of CO oxidation on the individual domains of a polycrystalline Pd foil was studied by photoemission electron microscopy (PEEM), mass spectroscopy (MS), and scanning tunneling microscopy (STM). The defects and steps were created by STM-controlled Ar+ sputtering and the novel PEEM-based approach allowed the simultaneous determination of local kinetic phase transitions on differently oriented µm-sized grains of a polycrystalline sample. The independent (single-crystal-like) reaction behavior of the individual Pd(hkl) domains in the 10-5 mbar pressure range changes upon Ar+ sputtering to a correlated reaction behavior, and the reaction fronts propagate unhindered across the grain boundaries. The defect-rich surface shows also a significantly higher CO tolerance as reflected by the shift of both the global (MS-measured) and the local (PEEM-measured) kinetic diagrams toward higher CO pressure.

17.
Acta Biomater ; 9(3): 5689-97, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23168223

ABSTRACT

The work presented here shows for the first time that it is possible to silicify S-layer coated liposomes and to obtain stable functionalized hollow nano-containers. For this purpose, the S-layer protein of Geobacillus stearothermophilus PV72/p2 was recombinantly expressed and used for coating positively charged liposomes composed of dipalmitoylphosphatidylcholine, cholesterol and hexadecylamine in a molar ratio of 10:5:4. Subsequently, plain (uncoated) liposomes and S-layer coated liposomes were silicified. Determination of the charge of the constructs during silicification allowed the deposition process to be followed. After the particles had been silicified, lipids were dissolved by treatment with Triton X-100 with the release of previously entrapped fluorescent dyes being determined by fluorimetry. Both, ζ-potential and release experiments showed differences between silicified plain liposomes and silicified S-layer coated liposomes. The results of the individual preparation steps were examined by embedding the respective assemblies in resin, ultrathin sectioning and inspection by bright-field transmission electron microscopy (TEM). Energy filtered TEM confirmed the successful construction of S-layer based silica cages. It is anticipated that this approach will provide a key to enabling technology for the fabrication of nanoporous protein cages for applications ranging from nano medicine to materials science.


Subject(s)
Liposomes/chemical synthesis , Membrane Glycoproteins/chemical synthesis , Silicon Dioxide/chemistry , Crystallization , Fluoresceins/metabolism , Geobacillus stearothermophilus/chemistry , Isoelectric Point , Liposomes/ultrastructure , Membrane Glycoproteins/ultrastructure , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Reproducibility of Results , Time Factors
18.
Phys Rev Lett ; 109(8): 084801, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-23002749

ABSTRACT

A mode converter for electron vortex beams is described. Numerical simulations, confirmed by experiment, show that the converter transforms a vortex beam with a topological charge m=±1 into beams closely resembling Hermite-Gaussian HG(10) and HG(01) modes. The converter can be used as a mode discriminator or filter for electron vortex beams. Combining the converter with a phase plate turns a plane wave into modes with topological charge m=±1. This combination serves as a generator of electron vortex beams of high brilliance.

19.
Ultramicroscopy ; 115: 21-5, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22459114

ABSTRACT

The holographic mask technique is used to create freely moving electrons with quantized angular momentum. With electron optical elements they can be focused to vortices with diameters below the nanometer range. The understanding of these vortex beams is important for many applications. Here, we produce electron vortex beams and compare them to a theory of electrons with topological charge. The experimental results show excellent agreement with simulations. As an immediate application, fundamental experimental parameters like spherical aberration and partial coherence are determined.

20.
Ultramicroscopy ; 111(8): 1239-46, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21801697

ABSTRACT

The electron optical performance of a transmission electron microscope (TEM) is characterized for direct spatial imaging and spectroscopy using electrons with energies as low as 20 keV. The highly stable instrument is equipped with an electrostatic monochromator and a C(S)-corrector. At 20 kV it shows high image contrast even for single-layer graphene with a lattice transfer of 213 pm (tilted illumination). For 4 nm thick Si, the 200 reflections (271.5 pm) were directly transferred (axial illumination). We show at 20 kV that radiation-sensitive fullerenes (C(60)) within a carbon nanotube container withstand an about two orders of magnitude higher electron dose than at 80 kV. In spectroscopy mode, the monochromated low-energy electron beam enables the acquisition of EELS spectra up to very high energy losses with exceptionally low background noise. Using Si and Ge, we show that 20 kV TEM allows the determination of dielectric properties and narrow band gaps, which were not accessible by TEM so far. These very first results demonstrate that low kV TEM is an exciting new tool for determination of structural and electronic properties of different types of nano-materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...