Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
PLoS One ; 17(3): e0263671, 2022.
Article in English | MEDLINE | ID: mdl-35275926

ABSTRACT

Novel therapeutic strategies are needed to control the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. Here, we present a protocol to anchor the SARS-CoV-2 spike (S-)protein in the cytoplasmic membranes of erythrocyte liposomes. A surfactant was used to stabilize the S-protein's structure in the aqueous environment before insertion and to facilitate reconstitution of the S-proteins in the erythrocyte membranes. The insertion process was studied using coarse grained Molecular Dynamics (MD) simulations. Liposome formation and S-protein anchoring was studied by dynamic light scattering (DLS), ELV-protein co-sedimentation assays, fluorescent microcopy and cryo-TEM. The Erythro-VLPs (erythrocyte based virus like particles) have a well defined size of ∼200 nm and an average protein density on the outer membrane of up to ∼300 proteins/µm2. The correct insertion and functional conformation of the S-proteins was verified by dose-dependent binding to ACE-2 (angiotensin converting enzyme 2) in biolayer interferometry (BLI) assays. Seroconversion was observed in a pilot mouse trial after 14 days when administered intravenously, based on enzyme-linked immunosorbent assays (ELISA). This red blood cell based platform can open novel possibilities for therapeutics for the coronavirus disease (COVID-19) including variants, and other viruses in the future.


Subject(s)
COVID-19 Vaccines , COVID-19 , Erythrocyte Membrane , Molecular Dynamics Simulation , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Vaccines, Virus-Like Particle , Animals , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/immunology , Female , Liposomes , Mice , Pilot Projects , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/pharmacology , Vaccines, Virus-Like Particle/chemistry , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/pharmacology
2.
ACS Chem Neurosci ; 12(8): 1395-1405, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33826295

ABSTRACT

Amyloid-ß (Aß) peptides spontaneously aggregate into ß- and cross-ß-sheets in model brain membranes. These nanometer sized can fuse into larger micrometer sized clusters and become extracellular and serve as nuclei for further plaque and fibril growth. Curcumin and homotaurine represent two different types of Aß aggregation inhibitors. While homotaurine is a peptic antiaggregant that binds to amyloid peptides, curcumin is a nonpeptic molecule that can inhibit aggregation by changing membrane properties. By using optical and fluorescent microscopy, X-ray diffraction, and UV-vis spectroscopy, we study the effect of curcumin and homotaurine on Aß25-35 aggregates in synthetic brain membranes. Both molecules partition spontaneously and uniformly in membranes and do not lead to observable membrane defects or disruption in our experiments. Both curcumin and homotaurine were found to significantly reduce the number of small, nanoscopic Aß aggregates and the corresponding ß- and cross-ß-sheet signals. While a number of research projects focus on potential drug candidates that target Aß peptides directly, membrane-lipid therapy explores membrane-mediated pathways to suppress peptide aggregation. Based on the results obtained, we conclude that membrane active drugs can be as efficient as peptide targeting drugs in inhibiting amyloid aggregation in vitro.


Subject(s)
Alzheimer Disease , Curcumin , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Curcumin/pharmacology , Humans , Peptide Fragments , Taurine/analogs & derivatives
3.
ACS Omega ; 5(16): 9114-9122, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32363263

ABSTRACT

Synthetic polycations are studied extensively as DNA delivery agents because of their ease of production, good chemical stability, and low cost relative to viral vectors. This report describes the synthesis of charge-shifting polycations based on N,N-(dimethylamino)ethyl acrylate (DMAEA) and 3-aminopropylmethacryamide (APM), called PAD copolymers, and their use for in vitro DNA delivery into HeLa cells. PAD copolymers of varying compositions were prepared by RAFT polymerization to yield polymers of controlled molecular weights with low dispersities. Model hydrolysis studies were carried out to assess the rate of charge-shifting of the polycations by loss of the cationic dimethylaminoethanol side chains. They showed reduction in the net cationic charge by about 10-50% depending on composition after 2 days at pH 7, forming polyampholytes comprising permanent cationic groups, residual DMAEA, as well as anionic acrylic acid groups. HeLa cells exposed for 4 h to PAD copolymers with the greatest charge-shifting ability showed comparable or higher viability at high concentrations, relative to the noncharge shifting polycations PAPM and polyethyleneimine (PEI) 2 days post-exposure. Cell uptake efficiency of PAD/60bp-Cy3 DNA polyplexes at 2.5:1 N/P ratio was very high (>95%) for all compositions, exceeding the uptake efficiency of PEI polyplexes of equivalent composition. These results suggest that these PAD copolymers, and in particular PAD80 containing 80 mol % DMAEA, have suitable rates of charge-shifting hydrolysis for DNA delivery, as PAD80 showed reduced cytotoxicity at high concentrations, while still retaining high uptake efficiencies. In addition, the polyampholytes formed during DMAEA hydrolysis in PAD copolymers can offer enhanced long-term cytocompatibility.

4.
Adv Biosyst ; 4(3): e1900185, 2020 03.
Article in English | MEDLINE | ID: mdl-32293142

ABSTRACT

The modification of erythrocyte membrane properties provides a new tool towards improved drug delivery and biomedical applications. The fabrication of hybrid erythrocyte liposomes is presented by doping red blood cell membranes with synthetic lipid molecules of different classes (PC, PS, PG) and different degrees of saturation (14:0, 16:0-18:1). The respective solubility limits are determined, and material properties of the hybrid liposomes are studied by a combination of X-ray diffraction, epi-fluorescent microscopy, dynamic light scattering (DLS), Zeta potential, UV-vis spectroscopy, and Molecular Dynamics (MD) simulations. Membrane thickness and lipid orientation can be tuned through the addition of phosphatidylcholine lipids. The hybrid membranes can be fluorescently labelled by incorporating Texas-red DHPE, and their charge modified by incorporating phosphatidylserine and phosphatidylglycerol. By using fluorescein labeled dextran as an example, it is demonstrated that small molecules can be encapsulated into these hybrid liposomes.


Subject(s)
Drug Delivery Systems/methods , Erythrocyte Membrane , Liposomes , Dextrans/chemistry , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/metabolism , Erythrocytes/cytology , Fluoresceins/chemistry , Humans , Liposomes/chemistry , Liposomes/metabolism , Nanostructures/chemistry , Synthetic Biology
5.
J Microencapsul ; 36(5): 421-431, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31401914

ABSTRACT

This work describes viability and distribution of INS-1E beta cells in shell-crosslinked alginate capsules, focussing on cells located near the capsule surface. Capsules were formed by air-shearing alginate suspensions of INS-1E cells into a gelling bath, and coating with poly-l-lysine (PLL) and 50% hydrolysed poly(methylvinylether-alt-maleic anhydride) to form crosslinked networks reinforcing the capsule surfaces. The percentage of cells at the capsule surface were determined using 2D and 3D confocal colocalization mapping. Encapsulated INS-1E cells showed high cell viability and progressive cell clustering out to six weeks. About 30% of cells were initially colocated with the 20 micrometer thick alginate-PLL-PMM50 shell, with 7% of cells protruded at the capsule surfaces, both reflecting random cell distributions. Protruding cells may cause cell-based immune responses, weaken capsules, and potentially result in cell escape from the capsules. The data shown indicate that reinforcing capsules with crosslinked shells may assist in preventing cell exposure and escape.


Subject(s)
Alginates/chemistry , Cells, Immobilized/cytology , Cross-Linking Reagents/chemistry , Insulin-Secreting Cells/cytology , Polylysine/analogs & derivatives , Animals , Capsules/chemistry , Cell Line , Cell Surface Extensions/ultrastructure , Cell Survival , Cells, Immobilized/ultrastructure , Gels/chemistry , Insulin-Secreting Cells/ultrastructure , Maleic Anhydrides/chemistry , Polylysine/chemistry , Rats
6.
ACS Appl Bio Mater ; 1(5): 1512-1522, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-34996202

ABSTRACT

In nature, cells reside within an extracellular matrix (ECM) that provides biophysical and biochemical cues to direct cell development and behavior. Traditional methods for studying cells involve using in vitro models that are convenient and cost-effective, but often use two-dimensional supports that are poor mimics for three-dimensional natural cell microenvironments. In this work, a synthetic polyampholyte, p(APM-co-AA) [poly(N-(3-aminopropyl)methacrylamide hydrochloride-co-acrylic acid)], was coated onto prestressed polystyrene support films that were then thermally shrunken, which concomitantly induced self-cross-linking of the polyampholyte. The cross-linking process involved a two-step sequence of anhydride formation from pairs of adjacent acrylic acid units, followed by amide cross-linking through reaction with primary amines on other chains. Attenuated reflectance infrared spectroscopy (ATR-IR) confirmed the formation of anhydride and amide bonds during heating, and the cross-linked films remained intact in cell culture media and basic solutions. Furthermore, the compressive stress from the shrinking substrate wrinkled the polyampholyte film, producing 3D scaffolds that were used to study the effect of topography on cell cultures. Cell viability tests confirmed the noncytotoxicity of the microstructured polyampholyte films. The surface wettability of the films was tuned by postfunctionalizing with different amines, with decylamine-functionalized films showing decreased fibroblast attachment, and d-glucamine-functionalized films showing reduced fibroblast spreading, compared to the control. Furthermore, the topography of the p(APM-co-AA) scaffolds could be tuned by changing the polyampholyte film thickness. Different topographies of the microstructured films elicited different fibroblast morphologies, with larger structures contributing to less complex cell boundaries, lower cell areas, and higher cell circularities. Overall, this tunable, self-cross-linking p(APM-co-AA) system can be fabricated into microstructured films, which can be used to study the effects of surface chemistry, topography, and other physical properties of biomimetic scaffolds on cell behavior and contribute to the library of existing biomimetic scaffolds.

7.
J Biomater Sci Polym Ed ; 27(4): 351-69, 2016.
Article in English | MEDLINE | ID: mdl-26754568

ABSTRACT

A series of polycations prepared by RAFT copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and N-(2-hydroxypropyl)methacrylamide, with molecular weights of 15 and 40 kDa, and APM content of 10-75 mol%, were tested as building blocks for electrostatically assembled hydrogels such as those used for cell encapsulation. Complexation and distribution of these copolymers within anionic calcium alginate gels, as well as cytotoxicity, cell attachment, and cell proliferation on surfaces grafted with the copolymers were found to depend on composition and molecular weight. Copolymers with lower cationic charge density and lower molecular weight showed less cytotoxicity and cell adhesion, and were more mobile within alginate gels. These findings aid in designing improved polyelectrolyte complexes for use as biomaterials.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Electrons , Polyamines/chemistry , Polyamines/pharmacology , Acrylamides/chemistry , Alginates/chemistry , Biocompatible Materials/chemical synthesis , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Free Radicals/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Hydrogels/chemistry , Molecular Weight , Myoblasts/cytology , Myoblasts/drug effects , Polyamines/chemical synthesis , Polyelectrolytes , Polymerization
8.
Langmuir ; 32(7): 1863-70, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26800849

ABSTRACT

The Diels-Alder [4 + 2] cycloaddition between furan- and maleimide-functional polyanions was used to form cross-linked synthetic polymer hydrogels. Poly(methyl vinyl ether-alt-maleic anhydride) was reacted with furfurylamine or N-(2-aminoethyl)maleimide in acetonitrile to form pairs of furan- and maleimide-functionalized poly(methyl vinyl ether-alt-maleic acid)s. Mixtures of these mutually reactive polyanions in water gelled within 15 min to 18 h, depending on degree of functionalization and polymer concentrations. Solution and magic-angle spinning (1)H NMR were used to confirm the formation of the Diels-Alder adduct, to analyze competing hydrolytic side reactions, and demonstrate postgelation functionalization. The effect of the degree of furan and maleimide functionalization, polymer concentration, pH, and calcium ion concentration, on gelation time, gel mechanical properties, and equilibrium swelling, are described. Release of dextran as a model drug was studied using fluorescence spectroscopy, as a function of gel composition and calcium treatment.

9.
Langmuir ; 31(20): 5623-32, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25907892

ABSTRACT

This article describes the formation of cross-linked 10-200-nm-thick polymer hydrogel films by alternating the spin-coating of two mutually reactive polymers from organic solutions, followed by hydrolysis of the resulting multilayer film in aqueous buffer. Poly(methyl vinyl ether-alt-maleic anhydride) (PMM) was deposited from acetonitrile solution, and poly(N-3-aminopropylmethacrylamide-co-N-2-hydroxypropylmethacrylamide) (PAPMx, where x corresponds to the 3-aminopropylmethacrylamide content ranging from 10 to 100%) was deposited from methanol. Multilayer films were formed in up to 20 deposition cycles. The films cross-linked during formation by reaction between the amine groups of PAPMx and the anhydride groups of PMM. The resulting multilayer films were covalently postfunctionalized by exposure to fluoresceinamine, decylamine, d-glucamine, or fluorescently labeled PAPMx solutions prior to the hydrolysis of residual anhydride in aqueous PBS buffer. This allowed tuning the hydrophobicity of the film to give static water contact angles ranging from about 5 to 90°. Increasing the APM content in PAPMx from 10 to 100% led to apparent Young's moduli from 300 to 700 kPa while retaining sufficient anhydride groups to allow postfunctionalization of the films. This allowed the resulting (PMM/PAPMx) multilayer films to be turned into adhesion-promoting or antifouling surfaces for C2C12 mouse myoblasts and MCF 10A premalignant human mammary epithelial cells.


Subject(s)
Epithelial Cells/metabolism , Hydrogels , Mammary Glands, Human/metabolism , Membranes, Artificial , Myoblasts/metabolism , Tissue Scaffolds/chemistry , Animals , Cell Line , Epithelial Cells/cytology , Humans , Hydrogels/chemical synthesis , Hydrogels/chemistry , Mammary Glands, Human/cytology , Materials Testing/methods , Mice , Myoblasts/cytology
10.
Mater Sci Eng C Mater Biol Appl ; 33(7): 4295-304, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23910346

ABSTRACT

Micropipette aspiration and confocal fluorescence microscopy were used to study the structure and mechanical properties of calcium alginate hydrogel beads (A beads), as well as A beads that were additionally coated with poly-L-lysine (P) and sodium alginate (A) to form, respectively, AP and APA hydrogels. A beads were found to continue curing for up to 500 h during storage in saline, due to residual calcium chloride carried over from the gelling bath. In subsequent saline washes, micropipette aspiration proved to be a sensitive indicator of gel weakening and calcium loss. Aspiration tests were used to compare capsule stiffness before and after citrate extraction of calcium. They showed that the initial gel strength is largely due to the calcium alginate gel cores, while the long term strength is solely due to the poly-L-lysine-alginate polyelectrolyte complex (PEC) shells. Confocal fluorescence microscopy showed that calcium chloride exposure after PLL deposition led to PLL redistribution into the hydrogel bead, resulting in thicker but more diffuse and weaker PEC shells. Adding a final alginate coating to form APA capsules did not significantly change the PEC membrane thickness and stiffness, but did speed the loss of calcium from the bead core.


Subject(s)
Alginates/chemistry , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Capsules , Citric Acid/chemistry , Gels/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Particle Size , Polylysine/analogs & derivatives , Polylysine/chemistry , Pressure , Temperature , Time Factors
11.
J Biomater Sci Polym Ed ; 22(16): 2127-45, 2011.
Article in English | MEDLINE | ID: mdl-21067656

ABSTRACT

Polyanions based on poly(methyl vinyl ether-alt-maleic acid) were investigated as materials for cell encapsulation. These water-soluble polyanions having molecular masses ranging from 20 to 1980 kDa were prepared by functionalization of poly(methyl vinyl ether-alt-maleic anhydride) with 5-aminofluorescein and/or α-methoxy-ω-amino-poly(ethylene glycol), followed by base hydrolysis of the residual anhydride groups to form the corresponding poly(methyl vinyl ether-alt-sodium maleate). Their potential to replace alginate both in the core and, in particular, the outer shell of calcium alginate-poly(L-lysine)-alginate (APA) capsules was determined using confocal fluorescence microscopy, osmotic pressure tests, permeability studies, protein binding and cell viability assays. These polymers were shown to be able to replace the outer layer of alginate, forming more resilient capsule shells. The resulting capsules showed similar permeability and resistance to bovine serum albumin binding, as well as superior viability for encapsulated cells, when compared to standard APA capsules. In addition, these polymers showed promise for use as functional additives to the capsule cores.


Subject(s)
Drug Compounding/methods , Maleates/chemistry , Methyl Ethers/chemistry , Polymers/chemistry , Polyvinyls/chemistry , Alginates/chemistry , Animals , Cattle , Cell Engineering/methods , Cell Line , Cell Survival , Fluoresceins/chemistry , Mice , Molecular Structure , Polyelectrolytes
12.
Langmuir ; 26(23): 17926-35, 2010 Dec 07.
Article in English | MEDLINE | ID: mdl-21028818

ABSTRACT

This Article describes a new microencapsulation method based on a Pickering emulsion templated interfacial atom transfer radical polymerization (PETI-ATRP). Cationic LUDOX CL nanoparticles were coated electrostatically with an anionic polymeric ATRP initiator, poly(sodium styrene sulfonate-co-2-(2-bromoisobutyryloxy)ethyl methacrylate) (PSB), prepared by radical copolymerization of sodium styrene sulfonate and 2-(2-bromoisobutyryloxy)ethyl methacrylate (BIEM). The resulting PSB-modified CL particles were surface active and could be used to stabilize oil-in-water Pickering emulsions. ATRP of water-soluble cross-linking monomers, confined to the oil-water interface by the surface-bound PSB, then led to nanoparticle/polymer composite shells. This method allowed encapsulation of core solvents (xylene, hexadecane, perfluoroheptane) with different solubility parameters. The microcapsule (MC) wall chemistry could accommodate different monomers, demonstrating the versatility of this method. Double-walled MCs were formed by sequentially carrying out PETI-ATRP and in situ polymerization of encapsulated monomers. The double-walled structure was verified by both transmission electron microscopy (TEM) and scanning transmission X-ray microscopy (STXM).

13.
Langmuir ; 26(19): 15554-60, 2010 Oct 05.
Article in English | MEDLINE | ID: mdl-20812695

ABSTRACT

Pickering emulsions stabilized by poly(sodium styrenesulfonate) (PSS) surface-modified LUDOX CL particles were used as templates for the layer-by-layer (LbL) deposition of polyelectrolytes and charged nanoparticles to form composite shells. The microcapsules resulting from repeated LbL coating with poly(diallyldimethylammonium chloride) (PDADMAC) and PSS had porous walls due to the loose arrangement of the original nanoparticle aggregates at the oil-water interface, leading to significant microcapsule rupture and low encapsulation efficiency. Microcapsules formed by coating with PDADMAC and anionic LUDOX HS nanoparticles led to dense walls and stronger microcapsules, suitable for microencapsulation of hydrophobic materials with a wide range of polarities.


Subject(s)
Emulsions , Polyethylenes/chemistry , Quaternary Ammonium Compounds/chemistry , Sulfonic Acids/chemistry
14.
Langmuir ; 26(7): 4916-24, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-20052983

ABSTRACT

Poly(methyl vinyl ether-alt-maleic anhydride) (PMM(0)) was partially hydrolyzed in a 9/1 acetonitrile-d(3)/D(2)O mixture and then diluted with an aqueous buffer and coated onto poly-L-lysine (PLL)-coated calcium alginate capsules. The resulting 50% hydrolyzed polymer (PMM(50)) is bound to the surface-immobilized PLL through both electrostatic and covalent interactions, resulting in a shell-cross-linked hydrogel capsule that is resistant to chemical challenges. Further hydrolysis of PMM(50) in aqueous buffer was monitored by potentiometry and was found to proceed with a half-life time of about 2.5 min at 20 degrees C such that residual anhydride groups not consumed by cross-linking with PLL would be deactivated by hydrolysis within several minutes of shell formation, removing potential sites for undesired protein binding. Initial protein-binding tests involving incubation of the capsules in bovine serum albumin solutions for 24 h showed no indication of protein binding. The effects of coating temperature, PLL concentration and molecular weight, PMM(50) molecular weight, and multiple PLL-PMM(50) coatings on shell morphology and behavior were studied using confocal fluorescence microscopy as well as chemical challenges involving sodium citrate and sodium hydroxide. The resilience of the cross-linked shell improved with increasing concentrations of PLL and decreasing molecular weight of PMM(50), both of which resulted in more polyelectrolyte being bound to the capsule. The permeability of these covalently cross-linked capsules was studied using fluorescently labeled dextrans and was found to be comparable to standard calcium alginate-PLL-alginate (APA) capsules.


Subject(s)
Capsules/chemistry , Polymers/chemistry , Alginates/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Microscopy, Fluorescence , Models, Biological , Polylysine/chemistry , Temperature
15.
Biomacromolecules ; 10(6): 1365-73, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19397289

ABSTRACT

Self-cross-linkable polyelectrolyte pairs comprised of poly(methacrylic acid, sodium salt-co-2-[methacryloyloxy]ethyl acetoacetate) (70:30 mol ratio, A70) and poly-L-lysine are incorporated into CaAlg beads to form either a covalently cross-linked shell or a core-cross-linked bead. In both cases the reactive polyanion is added to a solution of sodium alginate that may contain live cells and dropped into a calcium chloride gelling bath. Subsequent exposure to poly-L-lysine (15-30 kDa) leads to formation of a cross-linked shell, while exposure to lower molecular weight poly-L-lysine (4-15 kDa) leads to formation of an interpenetrating matrix of covalently cross-linked synthetic polymer within the CaAlg template. The resulting spherical composites are resistant to chemical and mechanical stress yet remain cyto-compatible. This approach to cell-encapsulation may be useful for cell immuno-isolation in therapeutic cell transplants.


Subject(s)
Alginates/chemistry , Capsules , Animals , Cell Line , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Mice , Permeability , Polymers/chemistry , Rhodamines/chemistry
16.
Langmuir ; 24(23): 13237-40, 2008 Dec 02.
Article in English | MEDLINE | ID: mdl-18973315

ABSTRACT

A pH-responsive Pickering emulsion has been designed on the basis of commercially available alumina-coated silica nanoparticles (Ludox CL silica particles) and potassium hydrogen phthalate (KHP). KHP was found to bind to cationic particle surfaces at pH values between 3.5 and 5.5, enabling the resulting surface-active particles to stabilize emulsions of xylenes in water. Above and below this pH range, the system demulsifies, resulting in a reversible Pickering emulsifier having two pH-controlled, reversible transitions.


Subject(s)
Emulsions/chemistry , Aluminum Oxide/chemistry , Hydrogen-Ion Concentration , Molecular Structure , Nanoparticles/chemistry , Particle Size , Phthalic Acids/chemistry , Silicon Dioxide , Surface Properties , Water/chemistry , Xylenes/chemistry
17.
Biomacromolecules ; 9(9): 2292-300, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18665640

ABSTRACT

Self-cross-linking polyelectrolytes are used to strengthen the surface of calcium alginate beads for cell encapsulation. Poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride), containing 30 mol % 2-aminoethyl methacrylate, and poly(sodium methacrylate), containing 30 mol % 2-(methacryloyloxy)ethyl acetoacetate, were prepared by radical polymerization. Sequential deposition of these polyelectrolytes on calcium alginate films or beads led to a shell consisting of a covalently cross-linked polyelectrolyte complex that resisted osmotic pressure changes as well as challenges with citrate and high ionic strength. Confocal laser fluorescence microscopy revealed that both polyelectrolytes were concentrated in the outer 7-25 microm of the calcium alginate beads. The thickness of this cross-linked shell increased with exposure time. GPC studies of solutions permeating through analogous flat model membranes showed molecular weight cut-offs between 150 and 200 kg/mol for poly(ethylene glycol), suitable for cell encapsulation. C 2C 12 mouse cells were shown to be viable within calcium alginate capsules coated with the new polyelectrolytes, even though some of the capsules showed fibroid overcoats when implanted in mice due to an immune response.


Subject(s)
Alginates/chemistry , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/pharmacology , Drug Delivery Systems , Electrolytes/chemistry , Electrolytes/pharmacology , Methacrylates/chemistry , Polymethacrylic Acids/chemistry , Acetoacetates , Animals , Cell Survival/drug effects , Cells, Cultured , Citric Acid/chemistry , Cross-Linking Reagents/chemical synthesis , Drug Design , Electrolytes/chemical synthesis , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Membranes, Artificial , Mice , Molecular Structure , Molecular Weight , Osmolar Concentration , Osmotic Pressure , Permeability/drug effects , Polyethylene Glycols/chemistry , Surface Properties
18.
J Synchrotron Radiat ; 14(Pt 2): 181-90, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17317919

ABSTRACT

The chemically selective modification of polymer mixtures by monochromated soft X-rays has been explored using the high-brightness fine-focused 50 nm beam of a scanning transmission X-ray microscope. Four different polymer systems were examined: a polymethylmethacrylate (PMMA) polyacrylonitrile (PAN) bilayer film; a PMMA-blend-PAN microphase-separated film; a poly(MMA-co-AN) copolymer film; and a poly(ethyl cyanoacrylate) homopolymer film. A high level of chemically selective modification was achieved for the PMMA/PAN bilayer; in particular, irradiation at 288.45 eV selectively removed the carbonyl group from PMMA while irradiation at 286.80 eV selectively reduced the nitrile group of PAN, even when these irradiations were carried out at the same (x,y) position of the sample. In the last two homogenous polymer systems, similar amounts of damage to the nitrile and carbonyl groups occurred during irradiation at either 286.80 or 288.45 eV. This is attributed to damage transfer between the C[triple-bond]N and C=O groups mediated by primary electrons, secondary electrons or radical/ionic processes, aided by their close spatial proximity. Although the overall thickness of the bilayer sample at 70 nm is smaller than the lateral line spreading of 100 nm, the interface between the layers appears to effectively block the transport of energy, and hence damage, between the two layers. The origins of the line spreading in homogeneous phases and possible origins of the damage blocking effect of the interface are discussed. To demonstrate chemically selective patterning, high-resolution multi-wavelength patterns were created in the PMMA/PAN bilayer system.

19.
J Am Chem Soc ; 128(1): 240-4, 2006 Jan 11.
Article in English | MEDLINE | ID: mdl-16390152

ABSTRACT

Modulation of the polymerization temperature in precipitation polymerizations was used to form onion-type polymer microspheres consisting of multiple nested layers. Specifically, the copolymerization of chloromethylstyrene and divinylbenzene-55 in acetonitrile, at temperatures ramping between 65 and 75 degrees C, led to monodisperse, cross-linked microspheres of about 10 mum diameter that have radial density profiles closely reflecting the thermal profiles used. This thermal imprinting is attributed to the copolymer formed being close to its theta point during the polymerization. As the microspheres grow by continuously capturing oligomers from solution, the resulting transient surface gel layer expands and contracts with temperature, and thus records the reaction temperature profile in the form of a corresponding density profile, even as it cross-links.

20.
J Synchrotron Radiat ; 10(Pt 3): 265-8, 2003 May 01.
Article in English | MEDLINE | ID: mdl-12714759

ABSTRACT

The carbon K-edge near-edge X-ray absorption spectra (NEXAFS) of oriented single crystals of N,N"-ethylenebis(N'-2-methylphenyl)urea have been recorded using scanning transmission X-ray microscopy (STXM). The single-crystal structure has been determined by X-ray crystallography. A strong polarization dependence (linear dichroism) has been observed and interpreted with the aid of the single-crystal structure and crystal alignment. These results demonstrate the ability of STXM to determine molecular orientation on a submicrometre spatial scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...