Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 87(5): 053103, 2016 05.
Article in English | MEDLINE | ID: mdl-27250388

ABSTRACT

A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

2.
Phys Chem Chem Phys ; 15(45): 19748-52, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-24141603

ABSTRACT

Microsolvation of chromophore ions commonly has large effects on their electronic structure and as a result on their optical absorption spectra. Here spectroscopy of protonated adenine (AdeH(+)) and its complex with one water molecule isolated in vacuo was done using a home-built mass spectrometer in combination with a tuneable pulsed laser system. Experiments also included the protonated adenosine 5'-monophosphate nucleotide (AMPH(+)). In the case of bare AdeH(+) ions, one-photon absorption leads to four dominant fragment ions corresponding to ammonium and ions formed after loss of either NH3, HCN, or NH2CN. The yields of these were measured as a function of the wavelength of the light from 210 nm to 300 nm, and they were combined to obtain the total photoinduced dissociation at each wavelength (i.e., action spectrum). A broad band between 230 nm and 290 nm and the tail of a band with maximum below 210 nm (high-energy band) are seen. In the case of AdeH(+)(H2O), the dominant dissociation channel after photoexcitation in the low-energy band was simply loss of H2O while photodissociation of protonated AMP revealed two dominant dissociation channels associated with the formation of either AdeH(+) or loss of H3PO4. The action spectra of AdeH(+), AdeH(+)(H2O), and AMPH(+) are almost identical in the 230-290 nm region, and they resemble the absorption spectrum of protonated adenine in aqueous solution recorded at low pH. Hence from our work it is firmly established that the lowest-energy transitions are independent of the surroundings.


Subject(s)
Adenine/chemistry , Adenosine Monophosphate/chemistry , Protons , Spectrum Analysis , Water/chemistry
3.
J Am Chem Soc ; 135(18): 6818-21, 2013 May 08.
Article in English | MEDLINE | ID: mdl-23611585

ABSTRACT

Many biochromophore anions located within protein pockets display charge-transfer (CT) transitions that are perturbed by the nearby environment, such as water or amino acid residues. These anions often contain the phenolate moiety as the electron donor and an acceptor group that couples to the donor via a π-conjugated system. Here we show using action spectroscopy that single molecules of water, methanol, and acetonitrile cause blue shifts in the electronic transition energy of the bare m-nitrophenolate anion by 0.22, 0.22, and 0.12 eV, respectively (uncertainty of 0.05 eV). These shifts are similar to CC2-predicted ones and are in accordance with the weaker binding to the phenolate end of the ion by acetonitrile in comparison with water and methanol. The nitro acceptor group is almost decoupled from the phenolate donor, and this ion therefore represents a good model for CT excitations of an anion. We found that the shift caused by one acetonitrile molecule is almost half of that experienced in bulk acetonitrile solution, clearly emphasizing the important role played by the microenvironment. In protic solvents, the shifts are larger because of hydrogen bonds to the phenolate oxygen. Finally, but not least, we provide experimental data that serve to benchmark calculations of excited states of ion-solvent complexes.


Subject(s)
Acetonitriles/chemistry , Methanol/chemistry , Nitrophenols/chemistry , Water/chemistry , Anions/chemistry , Molecular Structure , Solvents/chemistry
4.
J Am Chem Soc ; 135(17): 6485-93, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23557511

ABSTRACT

A complete understanding of the physics underlying the varied colors of firefly bioluminescence remains elusive because it is difficult to disentangle different enzyme-lumophore interactions. Experiments on isolated ions are useful to establish a proper reference when there are no microenvironmental perturbations. Here, we use action spectroscopy to compare the absorption by the firefly oxyluciferin lumophore isolated in vacuo and complexed with a single water molecule. While the process relevant to bioluminescence within the luciferase cavity is light emission, the absorption data presented here provide a unique insight into how the electronic states of oxyluciferin are altered by microenvironmental perturbations. For the bare ion we observe broad absorption with a maximum at 548 ± 10 nm, and addition of a water molecule is found to blue-shift the absorption by approximately 50 nm (0.23 eV). Test calculations at various levels of theory uniformly predict a blue-shift in absorption caused by a single water molecule, but are only qualitatively in agreement with experiment highlighting limitations in what can be expected from methods commonly used in studies on oxyluciferin. Combined molecular dynamics simulations and time-dependent density functional theory calculations closely reproduce the broad experimental peaks and also indicate that the preferred binding site for the water molecule is the phenolate oxygen of the anion. Predicting the effects of microenvironmental interactions on the electronic structure of the oxyluciferin anion with high accuracy is a nontrivial task for theory, and our experimental results therefore serve as important benchmarks for future calculations.


Subject(s)
Fireflies/metabolism , Indoles/chemistry , Pyrazines/chemistry , Water/chemistry , Animals , Anions , Color , Electrochemistry , Enzyme-Linked Immunosorbent Assay , Luminescence , Mass Spectrometry , Models, Chemical , Models, Molecular , Molecular Dynamics Simulation , Spectrometry, Mass, Electrospray Ionization , Stereoisomerism
5.
Chemphyschem ; 14(6): 1133-7, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23371843

ABSTRACT

We report electronic spectra of mass-selected MnO4(-) and MnO4(-)⋅H2O using electronic photodissociation spectroscopy. Bare MnO4(-) fragments by formation of MnO3(-) and MnO2(-), while the hydrated complex predominantly decays by loss of the water molecule. The band in the visible spectral region shows a well-resolved vibrational progression consistent with the excitation of a Mn-O stretching mode. The presence of a single water molecule does not significantly perturb the spectrum of MnO4(-). Comparison with the UV/Vis absorption spectrum of permanganate in aqueous solution shows that complete hydration causes a small blueshift, while theoretical models including a dielectric medium have predicted a redshift. The experimental data can be used as benchmarks for electronic structure theory methods, which usually predict electronic spectra in the absence of a chemical environment.

6.
Phys Chem Chem Phys ; 14(37): 12905-11, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-22898867

ABSTRACT

Charge-transfer excitations highly depend on the electronic coupling between the donor and acceptor groups. Nitrophenolates are simple examples of charge-transfer systems where the degree of coupling differs between ortho, meta and para isomers. Here we report the absorption spectra of the isolated anions in vacuo to avoid the complications of solvent effects. Gas-phase action spectroscopy was done with two different setups, an electrostatic ion storage ring and an accelerator mass spectrometer. The results are interpreted on the basis of CC2 quantum chemical calculations. We identified absorption maxima at 393, 532, and 399 nm for the para, meta, and ortho isomer, respectively, with the charge-transfer transition into the lowest excited singlet state. In the meta isomer, this π-π* transition is strongly redshifted and its oscillator strength reduced, which is related to the pronounced charge-transfer character, as a consequence of the topology of the conjugated π-system. Each isomer's different charge distribution in the ground state leads to a very different solvent shift, which in acetonitrile is bathochromic for the para and ortho, but hypsochromic for the meta isomer.


Subject(s)
Hydroxybenzoates/chemistry , Gases/chemistry , Isomerism , Models, Chemical , Quantum Theory , Solvents/chemistry , Spectrophotometry
7.
J Chem Phys ; 136(8): 084303, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22380038

ABSTRACT

In this article, we show that photoexcitation of radical anions facilitates electron transfer from sodium atoms in femtosecond encounters. Thus, excitation of 7,7,8,8-tetracyano-p-quinodimethane (TCNQ) and fluorinated TCNQ (TCNQ-F(4)) anions to the second optically active state at 478 nm led to increases in the yields of dianions of about 20% and 10%, respectively. Photoexcitation with a nanosecond-long laser pulse was done a few microseconds before the ions entered the sodium collision cell so that none of the ions would be in any of the initially reached doublet-excited states. We suggest an explanation for the higher electron capture cross section based on the formation of long-lived quartet state anions. Excitation of TCNQ anions within the lowest-energy absorption band, where there are no accessible quartet states, led instead to a lower yield of dianions. There are at least three explanations for the lower dianion yields: (1) Depletion of the monoanion beam due to photodetachment after the absorption of minimum two photons; (2) Formation of short-lived vibrationally excited dianions that decay by electron autodetachment prior to identification; and (3) Lower electron capture cross sections of vibrationally excited monoanions. Similar losses in dianion signal can occur at 478 nm so the actual yield of dianions at this wavelength due to the population of quartet states is therefore greater than that observed. Our methodology devises a more efficient route for the production of molecular dianions, and at the same time it may provide information on long-lived electronic states.

8.
J Phys Chem A ; 115(11): 2155-9, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21351785

ABSTRACT

The excited-state physics of the firefly luciferin anion depends on its chemical environment, and it is therefore important to establish the intrinsic behavior of the bare ion. Here we report electronic absorption spectra of the anion isolated in vacuo obtained at an electrostatic ion storage ring and an accelerator mass spectrometer where ionic dissociation is monitored on a long time scale (from 33 µs and up to 3 ms) and on a short time scale (0-3 µs), respectively. In the ring experiment the yield of all neutrals (mainly CO(2)) as a function of wavelength was measured whereas in the single pass experiment, the abundance of daughter ions formed after loss of CO(2) was recorded to provide action spectra. We find maxima at 535 and 265 nm, and that the band shape is largely determined by the sampling time interval, which is due to the kinetics of the dissociation process. Calculations at the TD-B3LYP/TZVPP++ level predict maximum absorption at 533 and 275 nm for the carboxylate isomer in excellent agreement with the experimental findings. The phenolate isomer lies higher in energy by 0.22 eV, and also its absorption maximum is calculated to be at 463 nm, which is far away from the experimental value. Our data serve to benchmark future theoretical models for bioluminescence from fireflies.


Subject(s)
Firefly Luciferin/chemistry , Spectrophotometry , Anions , Carbon Dioxide , Electrons , Hydroxybenzoates , Kinetics , Luminescent Proteins/chemistry , Mass Spectrometry , Vacuum
9.
J Phys Chem A ; 115(7): 1222-7, 2011 Feb 24.
Article in English | MEDLINE | ID: mdl-21291188

ABSTRACT

Oligo(p-phenyleneethynylene)s (OPEs) are conjugated oligomers of great interest within materials science and molecular electronics on account of their highly applicable electronic and optical properties. Here we use gas-phase action spectroscopy to elucidate how the intrinsic electronic properties of these chromophores are affected by nearby charges. An OPE3 chromophore with two nearby ammonium groups was synthesized. This molecule and a related OPE3 with only one amine protonation site were transferred to the gas phase by electrospray ionization and subjected to action spectroscopy. Ions were bunched in a 14-pole ion trap, accelerated to 50-keV kinetic energies, mass-to-charge selected by a magnet, and photoexcited in a crossed-beam configuration. Fragment ions were finally mass-analyzed by an electrostatic analyzer. The setup enables photodissociation mass spectrometry and action spectroscopy on the microsecond time scale. The gas-phase absorption of the mono- and dication was measured and compared to that of neutral chromophores in solution. Similar absorption was found for neutral chromophores (in solution) and the dication (in gas phase or solution), whereas the monocation absorbs at lower energies in the gas phase. Simple electrostatic considerations lead to an energy difference like the one found from the experiment. The work presented here addresses how the electronic properties of a π-conjugated system are affected by nearby charges, a question of fundamental interest in, for example, molecular electronics.

10.
J Am Soc Mass Spectrom ; 21(11): 1884-8, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20696594

ABSTRACT

Here we demonstrate that pump-probe experiments can be carried out on microsecond to millisecond timescales using an electrostatic ion storage ring. As a test case, we have chosen protoporhyrin IX anions that have lifetimes with respect to dissociation after photoexcitation on this time scale. Ions were photoexcited on one side of the ring with either 430- or 535-nm light (pump) and then allowed to take a certain number of revolutions before they were photoexcited by a second laser pulse (probe) with wavelengths between 650 and 950 nm. If ions were first excited by the pump, an increased yield of neutral products caused by the absorption of red light was measured in a microchannel plate detector located on the other side of the ring. This implies that it is possible to pick out ions that were photoexcited by the pump pulse and to spectroscopically characterize these ions. We report absorption spectra of 535 nm photoexcited porphyrin anions, with time delays of 0.19 and 0.57 ms between the pump and probe pulses, and find that absorption occurs over a broad region in the red.

11.
J Phys Chem A ; 114(27): 7301-10, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20568791

ABSTRACT

Mass spectrometric experiments show that protonated mixed ammonia/water clusters predominant exist in three forms namely H(+)(NH(3))(4)(H(2)O)(n), H(+)(NH(3))(5)(H(2)O)(n), and H(+)(NH(3))(6)(H(2)O)(n) (n = 1-25). For the first two series the collisional activation mass spectra are dominated by loss of water, whereas ions of the latter series preferably lose ammonia. The quantitative characteristics of these observations are reproduced by quantum chemical calculations that also provide insight into the geometrical structures of the clusters. Although the experiments and the calculations agree that clusters with five ammonia are thermodynamically preferred, this does not indicate a rigid tetrahedral structure with one central ammonium covered with an inner solvation shell of four ammonia molecules, with water outside. Instead, water and ammonia have comparable affinities to the binding sites of the first shell, with a preference for ammonia for the first two sites, and water for the last two. The "leftover" ammonia molecules bind equally strong as water molecules to sites in the second shell due to synergistic hydrogen binding. Finally, it is discussed whether the observation of enhanced stability of the H(+)(NH(3))(5)(H(2)O)(20) in terms of magic numbers and associated geometries may be related to a tetrahedral ammonium core encapsulated in a dodecahedral (H(2)O)(20) structure, typically found in clathrates.


Subject(s)
Ammonia/chemistry , Protons , Water/chemistry , Computer Simulation , Mass Spectrometry , Molecular Structure , Particle Size , Quantum Theory , Thermodynamics
12.
Chemphyschem ; 10(9-10): 1619-23, 2009 Jul 13.
Article in English | MEDLINE | ID: mdl-19266530

ABSTRACT

The results from an experimental study of bare and microsolvated peptide monocations in high-energy collisions with cesium vapor are reported. Neutral radicals form after electron capture from cesium, which decay by H loss, NH(3) loss, or N-C(alpha) bond cleavage into characteristic z(*) and c fragments. The neutral fragments are converted into negatively charged species in a second collision with cesium and are identified by means of mass spectrometry. For protonated GA (G = glycine, A = alanine), the branching ratio between NH(3) loss and N-C(alpha) bond cleavage is found to strongly depend on the molecule attached (H(2)O, CH(3)CN, CH(3)OH, and 18-crown-6 ether (CE)). Addition of H(2)O and CH(3)OH increases this ratio whereas CH(3)CN and CE decrease it. For protonated AAA ([AAA+H](+)), a similar effect is observed with methanol, while the ratio between the z(1) and z(2) fragment peaks remains unchanged for the bare and microsolvated species. Density functional theory calculations reveal that in the case of [GA+H](+)(CE), the singly occupied molecular orbital is located mainly on the amide group in accordance with the experimental results.


Subject(s)
Ions/chemistry , Peptides/chemistry , Cations/chemistry , Cesium/chemistry , Crown Ethers/chemistry , Electrons , Mass Spectrometry
13.
Rev Sci Instrum ; 79(2 Pt 1): 023107, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18315283

ABSTRACT

A new method for time-resolved daughter ion mass spectrometry is presented, based on the electrostatic ion storage ring in Aarhus, ELISA. Ions with high internal energy, e.g., as a result of photoexcitation, dissociate and the yield of neutrals is monitored as a function of time. This gives information on lifetimes in the microsecond to millisecond time range but no information on the fragment masses. To determine the dissociation channels, we have introduced pulsed supplies with switching times of a few microseconds. This allows rapid switching from storage of parent ions to storage of daughter ions, which are dumped into a detector after a number of revolutions in the ring. A fragment mass spectrum is obtained by monitoring the daughter ion signal as a function of the ring voltages. This technique allows identification of the dissociation channels and determination of the time dependent competition between these channels.


Subject(s)
Algorithms , Electric Power Supplies , Electromagnetic Phenomena/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Spectrometry, Mass, Electrospray Ionization/instrumentation , Static Electricity , Transducers , Equipment Design , Equipment Failure Analysis , Spectrometry, Mass, Electrospray Ionization/methods , Time Factors
14.
J Chem Phys ; 127(12): 124301, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17902897

ABSTRACT

We have developed an experimental technique that allows us to study the physics of short lived molecular dianions in the gas phase. It is based on the formation of monoanions via electrospray ionization, acceleration of these ions to keV energies, and subsequent electron capture in a sodium vapor cell. The dianions are stored in an electrostatic ion storage ring in which they circulate with revolution times on the order of 100 micros. This enables lifetime studies in a time regime covering five orders of magnitude, 10(-5)-1 s. We have produced dianions of 7,7,8,8-tetracyano-p-quinodimethane and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-p-quinodimethane (TCNQ-F(4)) and measured their lifetimes with respect to electron autodetachment. Our data indicate that most of the dianions were initially formed in electronically excited states in the electron transfer process. Two levels of excitation were identified by spectroscopy on the dianion of TCNQ-F(4), and the absorption spectrum was compared with spectra obtained from spectroelectrochemistry of TCNQ-F(4) in acetonitrile solution.

15.
J Phys Chem A ; 111(39): 9641-3, 2007 Oct 04.
Article in English | MEDLINE | ID: mdl-17850054

ABSTRACT

15N-labeling of di- and tripeptides reveals that electron capture to doubly protonated peptides results almost exclusively in ammonia loss from the N-terminal end, which clearly shows that a significant fraction of electron capture occurs at this end. In accordance with this finding, the competing channel of N-Calpha bond breakage leads to z+* ions and neutral c fragments after electron capture to small dications. In larger peptides that live long enough for internal proton exchanges to occur, c+ ions are also formed and in some cases in dominant yield. Attachment of one or two crown ethers to ammonium groups is likely to reduce the probability of proton transfer, which enhances the formation of z+* relative to c+. The total yield of z+* and c+ is, however, more or less unchanged, which indicates that proton transfer or hydrogen transfer from a NH3 group to the amide group is not required for the N-Calpha bond breakage.

SELECTION OF CITATIONS
SEARCH DETAIL
...