Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Oncol Biol Phys ; 95(2): 810-7, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27020107

ABSTRACT

PURPOSE: To support surface registration in cranial radiation therapy by structural information. The risk for spatial ambiguities is minimized by using tissue thickness variations predicted from backscattered near-infrared (NIR) light from the forehead. METHODS AND MATERIALS: In a pilot study we recorded NIR surface scans by laser triangulation from 30 volunteers of different skin type. A ground truth for the soft-tissue thickness was segmented from MR scans. After initially matching the NIR scans to the MR reference, Gaussian processes were trained to predict tissue thicknesses from NIR backscatter. Moreover, motion starting from this initial registration was simulated by 5000 random transformations of the NIR scan away from the MR reference. Re-registration to the MR scan was compared with and without tissue thickness support. RESULTS: By adding prior knowledge to the backscatter features, such as incident angle and neighborhood information in the scanning grid, we showed that tissue thickness can be predicted with mean errors of <0.2 mm, irrespective of the skin type. With this additional information, the average registration error improved from 3.4 mm to 0.48 mm by a factor of 7. Misalignments of more than 1 mm were almost thoroughly (98.9%) pushed below 1 mm. CONCLUSIONS: For almost all cases tissue-enhanced matching achieved better results than purely spatial registration. Ambiguities can be minimized if the cutaneous structures do not agree. This valuable support for surface registration increases tracking robustness and avoids misalignment of tumor targets far from the registration site.


Subject(s)
Cranial Irradiation/methods , Adult , Aged , Female , Head , Humans , Male , Middle Aged , Pilot Projects , Radiotherapy Planning, Computer-Assisted , Scattering, Radiation , Skin/anatomy & histology , Spectroscopy, Near-Infrared
2.
Int J Comput Assist Radiol Surg ; 11(4): 569-79, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26122931

ABSTRACT

PURPOSE: Patient immobilization and X-ray-based imaging provide neither a convenient nor a very accurate way to ensure low repositioning errors or to compensate for motion in cranial radiotherapy. We therefore propose an optical tracking device that exploits subcutaneous structures as landmarks in addition to merely spatial registration. To develop such head tracking algorithms, precise and robust computation of these structures is necessary. Here, we show that the tissue thickness can be predicted with high accuracy and moreover exploit local neighborhood information within the laser spot grid on the forehead to further increase this estimation accuracy. METHODS: We use statistical learning with Support Vector Regression and Gaussian Processes to learn a relationship between optical backscatter features and an MR tissue thickness ground truth. We compare different kernel functions for the data of five different subjects. The incident angle of the laser on the forehead as well as local neighborhoods is incorporated into the feature space. The latter represent the backscatter features from four neighboring laser spots. RESULTS: We confirm that the incident angle has a positive effect on the estimation error of the tissue thickness. The root-mean-square error falls even below 0.15 mm when adding the complete neighborhood information. This prior knowledge also leads to a smoothing effect on the reconstructed skin patch. Learning between different head poses yields similar results. The partial overlap of the point clouds makes the trade-off between novel information and increased feature space dimension obvious and hence feature selection by e.g., sequential forward selection necessary.


Subject(s)
Algorithms , Diagnostic Imaging/instrumentation , Imaging, Three-Dimensional/instrumentation , Models, Theoretical , Optical Devices , Equipment Design , Humans , Normal Distribution
3.
Cureus ; 7(1): e239, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26180663

ABSTRACT

This work presents a new method for the accurate estimation of soft tissue thickness based on near infrared (NIR) laser measurements. By using this estimation, our goal is to develop an improved non-invasive marker-less optical tracking system for cranial radiation therapy. Results are presented for three subjects and reveal an RMS error of less than 0.34 mm.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 7015-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26737907

ABSTRACT

Highly accurate localization of the human skull is vital in cranial radiotherapy. Marker-less optical head tracking provides a fast and accurate way to monitor this motion. Recent research has given evidence that marker-less tracking of the forehead benefits from tissue thickness information in addition to the 3D surface geometry. Using Gaussian Processes (GPs) tissue thickness is determined from optical backscatter of a sweeping laser. However, the computational complexity of the GPs scales cubically with the number of training samples. A full head scan contains 1024 points, whereas scans from several perspectives may be required for a comprehensive model for each subject. In five subjects, we thus evaluate sparse approximation methods to reduce the computational effort. We found a better - computation time versus root mean square error (RMSE) - tradeoff for a simple subset of data (SoD) technique. The increase of RMSE when dropping data was not found steep enough to justify the computational overhead of a better approximation by inducing point methods (namely FITC). Promising results were, however, obtained when clustering the training data before selecting the subset.


Subject(s)
Head/anatomy & histology , Adult , Female , Humans , Imaging, Three-Dimensional , Lasers , Male , Models, Theoretical , Normal Distribution , Reproducibility of Results
5.
Med Phys ; 41(8): 082701, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25086557

ABSTRACT

PURPOSE: The authors' research group is currently developing a new optical head tracking system for intracranial radiosurgery. This tracking system utilizes infrared laser light to measure features of the soft tissue on the patient's forehead. These features are intended to offer highly accurate registration with respect to the rigid skull structure by means of compensating for the soft tissue. In this context, the system also has to be able to quickly generate accurate reconstructions of the skin surface. For this purpose, the authors have developed a laser scanning device which uses time-multiplexed structured light to triangulate surface points. METHODS: The accuracy of the authors' laser scanning device is analyzed and compared for different triangulation methods. These methods are given by the Linear-Eigen method and a nonlinear least squares method. Since Microsoft's Kinect camera represents an alternative for fast surface reconstruction, the authors' results are also compared to the triangulation accuracy of the Kinect device. Moreover, the authors' laser scanning device was used for tracking of a rigid object to determine how this process is influenced by the remaining triangulation errors. For this experiment, the scanning device was mounted to the end-effector of a robot to be able to calculate a ground truth for the tracking. RESULTS: The analysis of the triangulation accuracy of the authors' laser scanning device revealed a root mean square (RMS) error of 0.16 mm. In comparison, the analysis of the triangulation accuracy of the Kinect device revealed a RMS error of 0.89 mm. It turned out that the remaining triangulation errors only cause small inaccuracies for the tracking of a rigid object. Here, the tracking accuracy was given by a RMS translational error of 0.33 mm and a RMS rotational error of 0.12°. CONCLUSIONS: This paper shows that time-multiplexed structured light can be used to generate highly accurate reconstructions of surfaces. Furthermore, the reconstructed point sets can be used for high-accuracy tracking of objects, meeting the strict requirements of intracranial radiosurgery.


Subject(s)
Lasers , Optical Imaging/instrumentation , Optical Imaging/methods , Calibration , Equipment Design , Head/surgery , Humans , Least-Squares Analysis , Linear Models , Nonlinear Dynamics , Radiosurgery/instrumentation , Robotics , Surgery, Computer-Assisted/instrumentation
6.
Article in English | MEDLINE | ID: mdl-25570648

ABSTRACT

Marker-less optical head-tracking constitutes a comfortable alternative with no exposure to radiation for realtime monitoring in radiation therapy. Supporting information such as tissue thickness has the potential to improve spatial tracking accuracy. Here we study how accurate tissue thickness can be estimated from the near-infrared (NIR) backscatter obtained from laser scans. In a case study, optical data was recorded with a galvanometric laser scanner from three subjects. A tissue ground truth from MRI was robustly matched via customized bite blocks. We show that Gaussian Processes accurately model the relationship between NIR features and tissue thickness. They were able to predict the tissue thickness with less than 0.5 mm root mean square error. Individual scaling factors for all features and an additional incident angle feature had positive effects on this performance.


Subject(s)
Head/diagnostic imaging , Lasers , Phantoms, Imaging , Humans , Magnetic Resonance Imaging , Normal Distribution , Radiography , Spectroscopy, Near-Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...