Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Opt Lett ; 45(7): 1766-1769, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32235994

ABSTRACT

The unique ring-shaped intensity patterns and helical phase fronts of optical vortices make them useful in many applications. Here we report for the first time, to the best of our knowledge, efficient Raman frequency conversion between vortex modes in a twisted hydrogen-filled single-ring hollow core photonic crystal fiber (SR-PCF). High-fidelity transmission of optical vortices in an untwisted SR-PCF becomes more and more difficult as the orbital angular momentum (OAM) order increases, due to scattering at structural imperfections in the fiber microstructure. In a helically twisted SR-PCF, however, the degeneracy between left- and right-handed versions of the same mode is lifted, with the result that they are topologically protected from such scattering. With launch efficiencies of ${\sim}{75}\% $∼75%, a high damage threshold and broadband guidance, these fibers are ideal for performing nonlinear experiments that require the polarization state and azimuthal order of the interacting modes to be preserved over long distances. Vortex coherence waves of internal molecular motion carrying angular momentum are excited in the gas, permitting the polarization and OAM of the Raman bands to be tailored, even in spectral regions where conventional solid-core waveguides are opaque or susceptible to optical damage.

2.
Opt Lett ; 42(17): 3271-3274, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28957081

ABSTRACT

The spectroscopy of atomic gases confined in hollow-core photonic crystal fiber (HC-PCF) provides optimal atom-light coupling beyond the diffraction limit, which is desirable for various applications such as sensing, referencing, and nonlinear optics. Recently, coherent spectroscopy was carried out on highly excited Rydberg states at room temperature in a gas-filled HC-PCF. The large polarizability of the Rydberg states made it possible to detect weak electric fields inside the fiber. In this Letter, we show that by combining highly excited Rydberg states with higher-order optical modes, we can gain insight into the distribution and underlying effects of these electric fields. Comparisons between experimental findings and simulations indicate that the fields are caused by the dipole moments of atoms adsorbed on the hollow-core wall. Knowing the origin of the electric fields is an important step towards suppressing them in future HC-PCF experiments. Furthermore, a better understanding of the influence of adatoms will be advantageous for optimizing electric-field-sensitive experiments carried out in the vicinity of nearby surfaces.

3.
Opt Lett ; 42(11): 2074-2077, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28569848

ABSTRACT

A hollow-core single-ring photonic crystal fiber (SR-PCF) consists of a ring of capillaries arranged around a central hollow core. Spinning the preform during drawing introduces a continuous helical twist, offering a novel means of controlling the modal properties of hollow-core SR-PCF. For example, twisting geometrically increases the effective axial propagation constant of the LP01-like modes of the capillaries, providing a means of optimizing the suppression of HOMs, which occurs when the LP11-like core mode phase-matches to the LP01-like modes of the surrounding capillaries. (In a straight fiber, optimum suppression occurs for a capillary-to-core diameter ratio d/D=0.682.) Twisting also introduces circular birefringence (to be studied in a future Letter) and has a remarkable effect on the transverse intensity profiles of the higher-order core modes, forcing the two-lobed LP11-like mode in the untwisted fiber to become three-fold symmetric in the twisted case. These phenomena are explored by means of extensive numerical modeling, an analytical model, and a series of experiments. Prism-assisted side-coupling is used to measure the losses, refractive indices, and near-field patterns of individual fiber modes in both the straight and twisted cases.

4.
Opt Lett ; 41(19): 4601-4604, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27749891

ABSTRACT

We report a Tm-doped soliton fiber laser passively mode-locked by intense optoacoustic interactions in a short length of solid-core silica photonic crystal fiber (PCF) with a nanobore in core-center. A repetition rate of 1.446 GHz pulse is achieved, corresponding to the 52nd harmonic of the 27.8 MHz cavity round-trip frequency. Strong optoacoustic interactions in this PCF-based, Tm-doped fiber laser ensure stable and repeatable gigahertz-rate pulse train generation at 1.85 µm wavelength, with a high supermode noise suppression ratio and low pulse timing jitter.

5.
Opt Lett ; 41(12): 2811-4, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27304295

ABSTRACT

We report on the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagomé-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the "fiber + gas" system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way toward tunable fiber-based sources of deep and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.

6.
Opt Lett ; 41(7): 1672-5, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27192315

ABSTRACT

Continuously twisted solid-core photonic crystal fiber (PCF) exhibits pure circular birefringence (optical activity), making it ideal for current sensors based on the Faraday effect. By numerical analysis, we identify the PCF geometry for which the circular birefringence (which scales linearly with twist rate) is a maximum. For silica-air PCF, this occurs at a shape parameter (diameter-to-spacing ratio of the hollow channels) of 0.37 and a scale parameter (spacing-to-wavelength) of 1.51. This result is confirmed experimentally by testing a range of different structures. To demonstrate the effectiveness of twisted PCF as a current sensor, a length of fiber is placed on the axis of a 7.6 cm long solenoid, and the Faraday rotation is measured at different values of dc current. The system is then used to chart the wavelength dependence of the Verdet constant.

7.
Phys Rev Lett ; 105(17): 173902, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-21231047

ABSTRACT

A unique characteristic of transient stimulated Raman scattering, in which the spatiotemporal evolution of the fields and the molecular excitation follow a universal self-similarity law, is observed in gas-filled photonic crystal fibers. As the input laser power is increased, the coupled system "optical fields + molecular excitation" goes through the same phases of time evolution but at a higher rate. Using the self-similarity law we are able to completely reconstruct the evolution of the pump and Stokes fields from one measurement.

8.
Opt Express ; 15(20): 12680-5, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-19550535

ABSTRACT

We demonstrate by numerical simulation that the general features of the loss spectrum of photonic crystal fibres (PCF) with a kagome structure can be explained by simple models consisting of thin concentric hexagons or rings of glass in air. These easily analysed models provide increased understanding of the mechanism of guidance in kagome PCF, and suggest ways in which the high-loss resonances in the loss spectrum may be shifted.

9.
Opt Express ; 14(4): 1596-603, 2006 Feb 20.
Article in English | MEDLINE | ID: mdl-19503487

ABSTRACT

We report smooth and broad continuum generation using a compact femtosecond Ti:Sapphire laser as a pump source and a tapered photonic crystal fibre as a nonlinear element. Spectral output is optimized for use in optical coherence tomography, providing a maximum longitudinal resolution of 1.5 microm in free space at 809 nm centre wavelength without use of additional spectral filtering.

10.
Opt Express ; 13(1): 236-44, 2005 Jan 10.
Article in English | MEDLINE | ID: mdl-19488348

ABSTRACT

Hollow-core photonic crystal fibres have excited interest as potential ultra-low loss telecommunications fibres because light propagates mainly in air instead of solid glass. We propose that the ultimate limit to the attenuation of such fibres is determined by surface roughness due to frozenin capillary waves. This is confirmed by measurements of the surface roughness in a HC-PCF, the angular distribution of the power scattered out of the core, and the wavelength dependence of the minimum loss of fibres drawn to different scales.

11.
Opt Express ; 13(7): 2503-11, 2005 Apr 04.
Article in English | MEDLINE | ID: mdl-19495142

ABSTRACT

We investigate the guidance properties of low-contrast photonic band gap fibres. As predicted by the antiresonant reflecting optical waveguide (ARROW) picture, band gaps were observed between wavelengths where modes of the high-index rods in the cladding are cutoff. At these wavelengths, leakage from the core by coupling to higher-order modes of the rods was observed directly. The low index contrast allowed for bend loss to be investigated; unlike in index-guiding fibres, anomalous "centripetal" light leakage through the inside of the bend can occur.

12.
Opt Express ; 12(13): 2864-9, 2004 Jun 28.
Article in English | MEDLINE | ID: mdl-19483801

ABSTRACT

Submicron-diameter tapered fibres and photonic crystal fibre cores, both of which are silica-air waveguides with low dispersion at 532 nm, were made using a conventional tapering process. In just cm of either waveguide, ns pulses from a low-power 532-nm microchip laser generated a single-mode supercontinuum broad enough to fill the visible spectrum without spreading far beyond it.

13.
Opt Express ; 11(14): 1613-20, 2003 Jul 14.
Article in English | MEDLINE | ID: mdl-19466039

ABSTRACT

We describe a hollow-core photonic bandgap fiber designed for use in the 850 nm wavelength region. The fiber has a minimum attenuation of 180dB/km at 847nm wavelength. The low-loss mode has a quasi- Gaussian intensity profile. The group-velocity dispersion of this mode passes through zero around 830nm, and is anomalous for longer wavelengths. The polarization beat length varies from 4 mm to 13 mm across the band gap. We expect this fiber to be useful for delivery of high-energy ultrashort optical pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...