Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Med Phys ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38314904

ABSTRACT

BACKGROUND: In radiopharmaceutical therapies (RPT) involving beta emitters, absorbed dose (Dabs ) calculations often employ the use of dose voxel kernels (DVK). Such methods are faster and easier to implement than Monte Carlo (MC) simulations. Using DVK methods implies a non-stochastic distribution of particles. This is a valid assumption for betas where thousands to tens of thousands of particles traversing the cell nucleus are required to achieve cell kill. However, alpha particles have linear energy transfers (LET) that are ∼500 times higher than LETs of betas. This results in a significant probability of killing a cell from even a single traversal through its nucleus. Consequently, the activity used for therapy involving alphas is very low, and the use of DVKs for estimating Dabs will generate results that may be erroneous. PURPOSE: This work aims at illustrating how use of DVKs affect the resulting Dabs in small tumors when irradiated with clinically relevant amounts of beta- and alpha-emitters. The results are compared with those from using a Monte Carlo method where the energy deposition from individual tracks is simulated. METHODS: To illustrate the issues associated with DVK for alpha radiopharmaceutical therapies at the microscale, a tumor cluster model was used to compare beta (177 Lu) and alphas (211 At, 225 Ac, and 227 Th) irradiations. We used 103 beta particles and 20 alpha particles per cell, which is within the range of the required number of particle traversals through its nucleus to sterilize a cell. Results from using both methods were presented with Dabs histograms, dose volume histograms, and Dabs error maps. RESULTS: For beta-emitter (177 Lu) irradiating the modeled tumor cluster, resulting Dabs was similar for both DVK and MC methods. For all alpha emitters, the use of DVK led to an overestimation of Dabs when compared to results generated using a MC approach. CONCLUSIONS: Our results demonstrate that the use of DVK methods for alpha emitters can lead to an overestimation in the calculated Dabs . The use of DVKs for therapies involving alpha emitters may therefore not be appropriate when only referring to the mean Dabs metric.

2.
J Appl Clin Med Phys ; 25(2): e14263, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38268200

ABSTRACT

BACKGROUND: Surface-guided radiation therapy (SGRT) systems have been widely installed and utilized on linear accelerators. However, the use of SGRT with proton therapy is still a newly developing field, and published reports are currently very limited. PURPOSE: To assess the clinical application and alignment agreement of SGRT with CT-on-rails (CTOR) and kV-2D image-guided radiation therapy (IGRT) for breast treatment using proton therapy. METHODS: Four patients receiving breast or chest wall treatment with proton therapy were the subjects of this study. Patient #1's IGRT modalities were a combination of kV-2D and CTOR. CTOR was the only imaging modality for patients #2 and #3, and kV-2D was the only imaging modality for patient #4. The patients' respiratory motions were assessed using a 2-min surface position recorded by the SGRT system during treatment. SGRT offsets reported after IGRT shifts were recorded for each fraction of treatment. The agreement between SGRT and either kV-2D or CTOR was evaluated. RESULTS: The respiratory motion amplitude was <4 mm in translation and <2.0° in rotation for all patients. The mean and maximum amplitude of SGRT offsets after application of IGRT shifts were ≤(2.6 mm, 1.6° ) and (6.8 mm, 4.5° ) relative to kV-2D-based IGRT; ≤(3.0 mm, 2.6° ) and (5.0 mm, 4.7° ) relative to CTOR-based IGRT without breast tissue inflammation. For patient #3, breast inflammation was observed for the last three fractions of treatment, and the maximum SGRT offsets post CTOR shifts were up to (14.0 mm, 5.2° ). CONCLUSIONS: Due to the overall agreement between SGRT and IGRT within reasonable tolerance, SGRT has the potential to serve as a valuable auxiliary IGRT tool for proton breast treatment and may improve the efficiency of proton breast treatment.


Subject(s)
Radiotherapy, Image-Guided , Thoracic Wall , Humans , Radiotherapy, Image-Guided/methods , Protons , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed , Inflammation
3.
J Appl Clin Med Phys ; 24(5): e13957, 2023 May.
Article in English | MEDLINE | ID: mdl-37043346

ABSTRACT

PURPOSE: To characterize potential dose to the fetus for all modes of delivery (dynamic adaptive aperture, static adaptive aperture, and no adaptive aperture) for the Mevion S250i Proton Therapy System with HYPERSCAN and compare the findings with those of other available proton systems. MATERIALS AND METHODS: Fetal dose measurements were performed for all three modes of dose delivery on the Mevion S250i Proton therapy system with HYPERSCAN (static aperture, dynamic aperture and uncollimated). Standard treatment plans were created in RayStation for a left-sided brain lesion treated with a vertex field, a left lateral field, and a posterior field. Measurements were performed using WENDI and the RANDO with the detector placed at representative locations to mimic the growth and movement of the fetus at different gestational stages. RESULTS: The fetal dose measurements varied with fetus position and the largest measured dose was 64.7 µSv per 2 Gy (RBE) fraction using the dynamic aperture. The smallest estimated fetal dose was 45.0 µSv per 2 Gy (RBE) at the base of the RANDO abdomen (47 cm from isocenter to the outer width of WENDI and 58.5 cm from the center of the WENDI detector) for the static aperture delivery. The vertex fields at all depths had larger contributions to the total dose than the other two and the dynamic aperture plans resulted in the highest dose measured for all depths. CONCLUSION: The reported doses are lower than reported doses using a double-scattering system. This work suggests that avoiding vertex fields and using the static aperture will help minimize dose to the fetus.


Subject(s)
Proton Therapy , Humans , Pregnancy , Female , Proton Therapy/methods , Radiotherapy Dosage , Protons , Fetus , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods
4.
J Nucl Med ; 62(8): 1133-1139, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33277396

ABSTRACT

In 2018, the National Cancer Institute and NRG Oncology partnered for the first time to host a joint workshop on systemic radiopharmaceutical therapy (RPT) to specifically address dosimetry issues and strategies for future clinical trials. The workshop focused on current dosimetric approaches for clinical trials, strategies under development that would optimize dose reporting, and future desired or optimized approaches for novel emerging radionuclides and carriers in development. In this article, we review the main approaches that are applied clinically to calculate the absorbed dose. These include absorbed doses calculated over a variety of spatial scales, including whole body, organ, suborgan, and voxel, the last 3 of which are achievable within the MIRD schema (S value) and can be calculated with analytic methods or Monte Carlo methods, the latter in most circumstances. This article will also contrast currently available methods and tools with those used in the past, to propose a pathway whereby dosimetry helps the field by optimizing the biologic effect of the treatment and trial design in the drug approval process to reduce financial and logistical costs. We also briefly discuss the dosimetric equivalent of biomarkers to help bring a precision medicine approach to RPT implementation when merited by evidence collected during early-phase trial investigations. Advances in the methodology and related tools have made dosimetry the optimum biomarker for RPT.


Subject(s)
National Cancer Institute (U.S.) , Radiometry , Neoplasms , United States
5.
Int J Radiat Oncol Biol Phys ; 109(4): 891-901, 2021 03 15.
Article in English | MEDLINE | ID: mdl-32805300

ABSTRACT

In radiopharmaceutical therapy (RPT), a radionuclide is systemically or locally delivered with the goal of targeting and delivering radiation to cancer cells while minimizing radiation exposure to untargeted cells. Examples of current RPTs include thyroid ablation with the administration of 131I, treatment of liver cancer with 90Y microspheres, the treatment of bony metastases with 223Ra, and the treatment of neuroendocrine tumors with 177Lu-DOTATATE. New RPTs are being developed where radionuclides are incorporated into systemic targeted therapies. To assure that RPT is appropriately implemented, advances in targeting need to be matched with advances in quantitative imaging and dosimetry methods. Currently, radiopharmaceutical therapy is administered by intravenous or locoregional injection, and the treatment planning has typically been implemented like chemotherapy, where the activity administered is either fixed or based on a patient's body weight or body surface area. RPT pharmacokinetics are measurable by quantitative imaging and are known to vary across patients, both in tumors and normal tissues. Therefore, fixed or weight-based activity prescriptions are not currently optimized to deliver a cytotoxic dose to targets while remaining within the tolerance dose of organs at risk. Methods that provide dose estimates to individual patients rather than to reference geometries are needed to assess and adjust the injected RPT dose. Accurate doses to targets and organs at risk will benefit the individual patients and decrease uncertainties in clinical trials. Imaging can be used to measure activity distribution in vivo, and this information can be used to determine patient-specific treatment plans where the dose to the targets and organs at risk can be calculated. The development and adoption of imaging-based dosimetry methods is particularly beneficial in early clinical trials. In this work we discuss dosimetric accuracy needs in modern radiation oncology, uncertainties in the dosimetry in RPT, and best approaches for imaging and dosimetry of internal radionuclide therapy.


Subject(s)
Neoplasms/radiotherapy , Radiopharmaceuticals/therapeutic use , Calibration , Clinical Trials as Topic , Humans , Positron-Emission Tomography , Radiotherapy Dosage , Radiotherapy, Image-Guided , Single Photon Emission Computed Tomography Computed Tomography
6.
J Nucl Med Technol ; 48(4): 297-303, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33020236

ABSTRACT

The D-SPECT is a dedicated cardiac camera that incorporates a solid-state semiconductor detector. This camera differs greatly from conventional SPECT/CT systems, resulting in significant differences in patient imaging. This continuing education article focuses on the specifications of both SPECT/CT and D-SPECT systems, radiopharmaceutical dosing requirements, imaging workflows, and some disadvantages of using each camera system. When used properly, the D-SPECT system can provide high-quality cardiac images with lower doses and faster exam times than conventional SPECT/CT systems.


Subject(s)
Heart/diagnostic imaging , Tomography, Emission-Computed, Single-Photon/instrumentation , Workflow , Humans
7.
Transl Lung Cancer Res ; 7(2): 210-215, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29876321

ABSTRACT

Lung cancer, due to its poor clinical outcomes and significant toxicity associated with standard photon-based radiation, is a disease site that has the potential to greatly benefit from accurate treatment with proton radiation therapy. The potential of proton therapy is the ability to increase the radiation dose to the tumor while simultaneously decreasing the radiation dose to surrounding healthy tissues. For lung cancer treatment, this could mean significant sparing of the uninvolved healthy lung, which is difficult to achieve with external photon beam therapy, or decreasing the heart dose. In treating lung cancer with proton therapy, some additional considerations need to be made compared to treating patients with external photon beam radiation therapy. These include accounting for the finite range of protons in the patient, understanding temporal effects, potential dose discrepancies and choosing an appropriate treatment planning system for the task. One final consideration is differences between the different available proton therapy delivery systems-passive scattered proton therapy (PSPT) and active scanning proton therapy.

8.
Int J Radiat Oncol Biol Phys ; 100(4): 1057-1066, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29485047

ABSTRACT

A substantial barrier to the single- and multi-institutional aggregation of data to supporting clinical trials, practice quality improvement efforts, and development of big data analytics resource systems is the lack of standardized nomenclatures for expressing dosimetric data. To address this issue, the American Association of Physicists in Medicine (AAPM) Task Group 263 was charged with providing nomenclature guidelines and values in radiation oncology for use in clinical trials, data-pooling initiatives, population-based studies, and routine clinical care by standardizing: (1) structure names across image processing and treatment planning system platforms; (2) nomenclature for dosimetric data (eg, dose-volume histogram [DVH]-based metrics); (3) templates for clinical trial groups and users of an initial subset of software platforms to facilitate adoption of the standards; (4) formalism for nomenclature schema, which can accommodate the addition of other structures defined in the future. A multisociety, multidisciplinary, multinational group of 57 members representing stake holders ranging from large academic centers to community clinics and vendors was assembled, including physicists, physicians, dosimetrists, and vendors. The stakeholder groups represented in the membership included the AAPM, American Society for Radiation Oncology (ASTRO), NRG Oncology, European Society for Radiation Oncology (ESTRO), Radiation Therapy Oncology Group (RTOG), Children's Oncology Group (COG), Integrating Healthcare Enterprise in Radiation Oncology (IHE-RO), and Digital Imaging and Communications in Medicine working group (DICOM WG); A nomenclature system for target and organ at risk volumes and DVH nomenclature was developed and piloted to demonstrate viability across a range of clinics and within the framework of clinical trials. The final report was approved by AAPM in October 2017. The approval process included review by 8 AAPM committees, with additional review by ASTRO, European Society for Radiation Oncology (ESTRO), and American Association of Medical Dosimetrists (AAMD). This Executive Summary of the report highlights the key recommendations for clinical practice, research, and trials.


Subject(s)
Radiation Oncology/standards , Societies, Scientific/standards , Terminology as Topic , Advisory Committees/organization & administration , Advisory Committees/standards , Clinical Trials as Topic , Humans , Radiotherapy Dosage/standards , Radiotherapy Planning, Computer-Assisted/standards , Reference Standards , Software/standards , United States
9.
Phys Med Biol ; 63(2): 02NT03, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29346116

ABSTRACT

Four dimensional computed tomography (4DCT) scans are routinely used in radiation therapy to determine the internal treatment volume for targets that are moving (e.g. lung tumors). The use of these studies has allowed clinicians to create target volumes based upon the motion of the tumor during the imaging study. The purpose of this work is to determine if a target volume based on a single 4DCT scan at simulation is sufficient to capture thoracic motion. Phantom studies were performed to determine expected differences between volumes contoured on 4DCT scans and those on the evaluation CT scans (slow scans). Evaluation CT scans acquired during treatment of 11 patients were compared to the 4DCT scans used for treatment planning. The images were assessed to determine if the target remained within the target volume determined during the first 4DCT scan. A total of 55 slow scans were compared to the 11 planning 4DCT scans. Small differences were observed in phantom between the 4DCT volumes and the slow scan volumes, with a maximum of 2.9%, that can be attributed to minor differences in contouring and the ability of the 4DCT scan to adequately capture motion at the apex and base of the motion trajectory. Larger differences were observed in the patients studied, up to a maximum volume difference of 33.4%. These results demonstrate that a single 4DCT scan is not adequate to capture all thoracic motion throughout treatment.


Subject(s)
Four-Dimensional Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Movement , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Thoracic Neoplasms/diagnostic imaging , Thoracic Neoplasms/radiotherapy , Humans , Proton Therapy , Radiotherapy Dosage , Radiotherapy, Conformal , Respiration , Retrospective Studies
10.
Phys Med Biol ; 62(19): 7659-7681, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28749373

ABSTRACT

RaySearch Americas Inc. (NY) has introduced a commercial Monte Carlo dose algorithm (RS-MC) for routine clinical use in proton spot scanning. In this report, we provide a validation of this algorithm against phantom measurements and simulations in the GATE software package. We also compared the performance of the RayStation analytical algorithm (RS-PBA) against the RS-MC algorithm. A beam model (G-MC) for a spot scanning gantry at our proton center was implemented in the GATE software package. The model was validated against measurements in a water phantom and was used for benchmarking the RS-MC. Validation of the RS-MC was performed in a water phantom by measuring depth doses and profiles for three spread-out Bragg peak (SOBP) beams with normal incidence, an SOBP with oblique incidence, and an SOBP with a range shifter and large air gap. The RS-MC was also validated against measurements and simulations in heterogeneous phantoms created by placing lung or bone slabs in a water phantom. Lateral dose profiles near the distal end of the beam were measured with a microDiamond detector and compared to the G-MC simulations, RS-MC and RS-PBA. Finally, the RS-MC and RS-PBA were validated against measured dose distributions in an Alderson-Rando (AR) phantom. Measurements were made using Gafchromic film in the AR phantom and compared to doses using the RS-PBA and RS-MC algorithms. For SOBP depth doses in a water phantom, all three algorithms matched the measurements to within ±3% at all points and a range within 1 mm. The RS-PBA algorithm showed up to a 10% difference in dose at the entrance for the beam with a range shifter and >30 cm air gap, while the RS-MC and G-MC were always within 3% of the measurement. For an oblique beam incident at 45°, the RS-PBA algorithm showed up to 6% local dose differences and broadening of distal fall-off by 5 mm. Both the RS-MC and G-MC accurately predicted the depth dose to within ±3% and distal fall-off to within 2 mm. In an anthropomorphic phantom, the gamma index (dose tolerance = 3%, distance-to-agreement = 3 mm) was greater than 90% for six out of seven planes using the RS-MC, and three out seven for the RS-PBA. The RS-MC algorithm demonstrated improved dosimetric accuracy over the RS-PBA in the presence of homogenous, heterogeneous and anthropomorphic phantoms. The computation performance of the RS-MC was similar to the RS-PBA algorithm. For complex disease sites like breast, head and neck, and lung cancer, the RS-MC algorithm will provide significantly more accurate treatment planning.


Subject(s)
Algorithms , Computer Simulation , Monte Carlo Method , Protons , Radiotherapy Planning, Computer-Assisted/methods , Humans , Phantoms, Imaging , Radiometry , Radiotherapy Dosage
11.
Phys Med Biol ; 59(4): 853-67, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24487573

ABSTRACT

For the radiation treatment of lung cancer patients, four-dimensional computed tomography (4D-CT) is a common practice used clinically to image tumor motion and subsequently determine the internal target volume (ITV) from the maximum intensity projection (MIP) images. ITV, which is derived from short pre-treatment 4D-CT scan (<6 s per couch position), may not adequately cover the extent of tumor motion during the treatment, particularly for patients that exhibit a large respiratory variability. Inaccurate tumor localization may result in under-dosage of the tumor or over-dosage of the surrounding tissues. The purpose of this study is therefore to assess the degree of tumor under-dosage in case of regular and irregular breathing for proton radiotherapy using ITV-based treatment planning. We place a spherical lesion into a modified XCAT phantom that is also capable of producing 4D images based on irregular breathing, and move the tumor according to real tumor motion data, which is acquired over multiple days by tracking gold fiducial markers implanted into the lung tumors of patients. We derive ITVs by taking the union of all tumor positions during 6 s of tumor motion in the phantom using the first day patient tumor tracking data. This is equivalent to ITVs generated clinically from cine-mode 4D-CT MIP images. The treatment plans created for different ITVs are then implemented on dynamic phantoms with tumor motion governed by real tumor tracking data from consecutive days. By comparing gross tumor volume dose distribution on days of 'treatment' with the ITV dose distribution, we evaluate the deviation of the actually delivered dose from the predicted dose. Our results have shown that the proton treatment planning on ITV derived from pre-treatment cine-mode 4D-CT can result in under-dosage (dose covering 95% of volume) of the tumor by up to 25.7% over 3 min of treatment for the patient with irregular respiratory motion. Tumor under-dosage is less significant for the patient with relatively regular breathing. We have demonstrated that proton therapy using the pre-treatment 4D-CT based ITV method can lead to significant under-dosage of the tumor, highlighting the need for daily customization to generate a target volume that represents tumor positions during the treatment more accurately.


Subject(s)
Four-Dimensional Computed Tomography , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Models, Biological , Movement , Proton Therapy , Humans , Lung Neoplasms/physiopathology , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Respiration , Time Factors
12.
Med Phys ; 40(9): 091706, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24007139

ABSTRACT

PURPOSE: The purpose of this work is to present a framework to evaluate the accuracy of four-dimensional treatment planning in external beam radiation therapy using measured patient data and digital phantoms. METHODS: To accomplish this, 4D digital phantoms of two model patients were created using measured patient lung tumor positions. These phantoms were used to simulate a four-dimensional computed tomography image set, which in turn was used to create a 4D Monte Carlo (4DMC) treatment plan. The 4DMC plan was evaluated by simulating the delivery of the treatment plan over approximately 5 min of tumor motion measured from the same patient on a different day. Unique phantoms accounting for the patient position (tumor position and thorax position) at 2 s intervals were used to represent the model patients on the day of treatment delivery and the delivered dose to the tumor was determined using Monte Carlo simulations. RESULTS: For Patient 1, the tumor was adequately covered with 95.2% of the tumor receiving the prescribed dose. For Patient 2, the tumor was not adequately covered and only 74.3% of the tumor received the prescribed dose. CONCLUSIONS: This study presents a framework to evaluate 4D treatment planning methods and demonstrates a potential limitation of 4D treatment planning methods. When systematic errors are present, including when the imaging study used for treatment planning does not represent all potential tumor locations during therapy, the treatment planning methods may not adequately predict the dose to the tumor. This is the first example of a simulation study based on patient tumor trajectories where systematic errors that occur due to an inaccurate estimate of tumor motion are evaluated.


Subject(s)
Four-Dimensional Computed Tomography , Monte Carlo Method , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Setup Errors , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Phantoms, Imaging
13.
Med Phys ; 40(7): 071728, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23822432

ABSTRACT

PURPOSE: The XCAT phantom is a realistic 4D digital torso phantom that is widely used in imaging and therapy research. However, lung mass is not conserved between respiratory phases of the phantom, making detailed dosimetric simulations and dose accumulation unphysical. A framework is developed to correct this issue by enforcing local mass conservation in the XCAT lung. Dose calculations are performed to assess the implications of neglecting mass conservation, and to demonstrate an application of the phantom to calculate the accumulated delivered dose in an irregularly breathing patient. METHODS: A displacement vector field (DVF) between each respiratory state and a reference image is generated from the XCAT motion model and its divergence is calculated and used to correct the lung density. A series of phantoms with regular and irregular breathing (based on patient data) are generated and modified to conserve mass. Monte Carlo methods are used to simulate conventional and SBRT treatment delivery. The calculated dose is deformed and accumulated using the DVF. Results from the mass-conserving and original XCAT are compared. A 4DCT is simulated for the irregularly breathing patient, and a 4DCT-based dose estimate is compared with the accumulated delivered dose. RESULTS: The presented framework successfully conserves mass in the XCAT lung. The spatial distribution of the lung dose was qualitatively changed by the use of a mass conservation in the XCAT; however, the corresponding DVH did not change significantly. The comparison of the delivered dose with the 4DCT-based prediction shows similar lung metric results, however dose differences of 10% can be seen in some spatial regions. CONCLUSIONS: The XCAT phantom has been successfully modified so that it conserves lung mass during respiration, enabling it to be used as a tool to perform dose accumulation studies in the lung without relying on deformable image registration. Neglecting mass conservation can result in erroneous spatial distributions of the dose in the lung. Using this tool to simulate patient treatments reveals differences between the planned dose and the calculated delivered dose for the full treatment. The software is freely available from the authors.


Subject(s)
Four-Dimensional Computed Tomography/instrumentation , Lung/diagnostic imaging , Phantoms, Imaging , Radiation Dosage , Torso/diagnostic imaging , Humans , Lung/physiopathology , Lung/radiation effects , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/physiopathology , Lung Neoplasms/radiotherapy , Monte Carlo Method , Respiration
14.
Phys Med Biol ; 57(11): 3597-608, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22595980

ABSTRACT

Digital phantoms continue to play a significant role in modeling and characterizing medical imaging. The currently available XCAT phantom incorporates both the flexibility of mathematical phantoms and the realistic nature of voxelized phantoms. This phantom generates images based on a regular breathing pattern and can include arbitrary lung tumor trajectories. In this work, we present an algorithm that modifies the current XCAT phantom to generate 4D imaging data based on irregular breathing. First, a parameter is added to the existing XCAT phantom to include any arbitrary tumor motion. This modification introduces the desired tumor motion but, comes at the cost of decoupled diaphragm, chest wall and lung motion. To remedy this problem diaphragm and chest wall motion is first modified based on initial tumor location and then input to the XCAT phantom. This generates a phantom with synchronized respiratory motion. Mapping of tumor motion trajectories to diaphragm and chest wall motion is done by adaptively calculating a scale factor based on tumor to lung contour distance. The distance is calculated by projecting the initial tumor location to lung edge contours characterized by quadratic polynomials. Data from ten patients were used to evaluate the accuracy between actual independent tumor location and the location obtained from the modified XCAT phantom. The RMSE and standard deviations for ten patients in x, y, and z directions are: (0.29 ± 0.04, 0.54 ± 0.17, and0.39 ± 0.06) mm. To demonstrate the utility of the phantom, we use the new phantom to simulate a 4DCT acquisition as well as a recently published method for phase sorting. The modified XCAT phantom can be used to generate more realistic imaging data for enhanced testing of algorithms for CT reconstruction, tumor tracking, and dose reconstruction.


Subject(s)
Four-Dimensional Computed Tomography/instrumentation , Lung Neoplasms/diagnostic imaging , Phantoms, Imaging , Female , Humans , Lung Neoplasms/physiopathology , Male , Movement , Respiration
15.
Phys Med Biol ; 55(2): N63-74, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20023331

ABSTRACT

Improvements to current small animal PET scanners can be made by improving the sensitivity and the spatial resolution of the scanner. In the past, efforts have been made to minimize the crystal dimensions in the axial and transaxial directions to improve the spatial resolution and to increase the crystal length to improve the sensitivity of the scanner. We have designed tapered PET detectors with the purpose of reducing the gaps between detector modules and optimizing the sensitivity of a future-generation small animal PET scanner. In this work, we investigate spatial resolution and sensitivity of a scanner based on tapered detector elements using Monte Carlo simulations. For tapered detector elements more scintillation material is used per detector resulting in a higher sensitivity of the scanner. However, since the detector elements are not uniform in size, degradation in spatial resolution is also expected. To investigate characteristics of tapered PET detectors, the spatial resolution and sensitivity of a one-ring scanner were simulated for a system based on traditional cuboid detectors and a scanner based on tapered detectors. Additionally, the effect of depth of interaction (DOI) resolution on the spatial resolution for the traditional and tapered detectors was evaluated. All simulations were performed using the Monte Carlo simulation package GATE. Using the tapered arrays, a 64% improvement in the sensitivity across the field of view was found compared with traditional detectors for the same ring diameter. The level of DOI encoding was found to be the dominating factor in determining the radial spatial resolution and not the detector shape. For all levels of DOI encoding, no significant difference was found for the spatial resolution when comparing the tapered and the cuboid detectors. Detectors employing the tapered crystal design along with excellent DOI resolution will lead to PET scanners with higher sensitivity and uniform spatial resolution across the field of view.


Subject(s)
Computer Simulation , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/methods , Animals , Equipment Design , Image Enhancement/instrumentation , Image Enhancement/methods , Mice , Monte Carlo Method , Software
16.
Phys Med Biol ; 54(2): 433-45, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19098356

ABSTRACT

Many laboratories develop depth-encoding detectors to improve the trade-off between spatial resolution and sensitivity in positron emission tomography (PET) scanners. One challenge in implementing these detectors is the need to calibrate the depth of interaction (DOI) response for the large numbers of detector elements in a scanner. In this work, we evaluate two different methods, a linear detector calibration and a linear crystal calibration, for determining DOI calibration parameters. Both methods can use measurements from any source distribution and location, or even the intrinsic lutetium oxyorthosilicate (LSO) background activity, and are therefore well suited for use in a depth-encoding PET scanner. The methods were evaluated by measuring detector and crystal DOI responses for all eight detectors in a prototype depth-encoding PET scanner. The detectors utilize dual-ended readout of LSO scintillator arrays with position-sensitive avalanche photodiodes (PSAPDs). The LSO arrays have 7 x 7 elements, with a crystal size of 0.92 x 0.92 x 20 mm(3) and pitch of 1.0 mm. The arrays are read out by two 8 x 8 mm(2) area PSAPDs placed at opposite ends of the arrays. DOI is measured by the ratio of the amplitude of the total energy signals measured by the two PSAPDs. Small variations were observed in the DOI responses of different crystals within an array as well as DOI responses for different arrays. A slightly nonlinear dependence of the DOI ratio on depth was observed and the nonlinearity was larger for the corner and edge crystals. The DOI calibration parameters were obtained from the DOI responses measured in a singles mode. The average error between the calibrated DOI and the known DOI was 0.8 mm if a linear detector DOI calibration was used and 0.5 mm if a linear crystal DOI calibration was used. A line source phantom and a hot rod phantom were scanned on the prototype PET scanner. DOI measurement significantly improved the image spatial resolution no matter which DOI calibration method was used. A linear crystal DOI calibration provided slightly better image spatial resolution compared with a linear detector DOI calibration.


Subject(s)
Positron-Emission Tomography/instrumentation , Animals , Biomedical Engineering , Biophysical Phenomena , Humans , Phantoms, Imaging , Positron-Emission Tomography/statistics & numerical data , Sensitivity and Specificity
17.
J Nucl Med ; 49(7): 1132-40, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18552140

ABSTRACT

UNLABELLED: Detectors with depth-encoding allow a PET scanner to simultaneously achieve high sensitivity and high spatial resolution. METHODS: A prototype PET scanner, consisting of depth-encoding detectors constructed by dual-ended readout of lutetium oxyorthosilicate (LSO) arrays with 2 position-sensitive avalanche photodiodes (PSAPDs), was developed. The scanner comprised 2 detector plates, each with 4 detector modules, and the LSO arrays consisted of 7 x 7 elements, with a crystal size of 0.9225 x 0.9225 x 20 mm and a pitch of 1.0 mm. The active area of the PSAPDs was 8 x 8 mm. The performance of individual detector modules was characterized. A line-source phantom and a hot-rod phantom were imaged on the prototype scanner in 2 different scanner configurations. The images were reconstructed using 20, 10, 5, 2, and 1 depth-of-interaction (DOI) bins to demonstrate the effects of DOI resolution on reconstructed image resolution and visual image quality. RESULTS: The flood histograms measured from the sum of both PSAPD signals were only weakly depth-dependent, and excellent crystal identification was obtained at all depths. The flood histograms improved as the detector temperature decreased. DOI resolution and energy resolution improved significantly as the temperature decreased from 20 degrees C to 10 degrees C but improved only slightly with a subsequent temperature decrease to 0 degrees C. A full width at half maximum (FWHM) DOI resolution of 2 mm and an FWHM energy resolution of 15% were obtained at a temperature of 10 degrees C. Phantom studies showed that DOI measurements significantly improved the reconstructed image resolution. In the first scanner configuration (parallel detector planes), the image resolution at the center of the field of view was 0.9-mm FWHM with 20 DOI bins and 1.6-mm FWHM with 1 DOI bin. In the second scanner configuration (detector planes at a 40 degrees angle), the image resolution at the center of the field of view was 1.0-mm FWHM with 20 DOI bins and was not measurable when using only 1 bin. CONCLUSION: PET scanners based on this detector design offer the prospect of high and uniform spatial resolution (crystal size, approximately 1 mm; DOI resolution, approximately 2 mm), high sensitivity (20-mm-thick detectors), and compact size (DOI encoding permits detectors to be tightly packed around the subject and minimizes number of detectors needed).


Subject(s)
Positron-Emission Tomography/instrumentation , Equipment Design/instrumentation , Lutetium , Phantoms, Imaging , Silicates , Temperature
18.
Med Phys ; 33(2): 405-10, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16532948

ABSTRACT

The spatial resolution in PET is poorer than that of CT or MRI. All modern PET scanners use block detectors, i.e., clusters of scintillation crystals coupled to four photomultiplier tubes. Some of the loss of spatial resolution in PET is attributed to the use of block detectors, because a photon that interacts with one crystal in the cluster may be incorrectly positioned, resulting in blurring of the reconstructed image. This is called the "block effect." The block effect was measured for detectors from the CTI HR+ scanner, and the GE Advance scanner; two popular clinical PET scanners. The effect of changing the depth of first interaction of a gamma ray in the scintillation crystals was also studied to determine if it may be a contributor to the block effect. The block effect was found to be 1.2 +/- 0.5 mm for the central crystals and negligible for the edge crystals in the CTI HR+ block. It was 0.9 +/- 0.3 mm in the central crystals of the GE Advance detector, and 0.7 +/- 0.3 mm in the edge crystals of the GE Advance detector. In the CTI HR+ detector, a depth dependence on the positioning of the event was observed, as was a dependence on the crystal location (edge versus center). In the GE Advance detector events that occurred at different interaction depths were positioned consistently. The percentage of events that may be positioned inaccurately was also calculated for both detectors. In the CTI HR+ detector as many as 16% of all events in the block detector may be positioned incorrectly. In the GE Advance detector as many as 13% of all events in the block detector may be positioned inaccurately. These results suggest that the depth of interaction of an annihilation photon may contribute to the block effect in detectors that use crystals cut from a single scintillation crystal (pseudodiscrete crystals), and is less dominant a factor for detectors that use discrete crystals with light sharing between the crystals. Investigating the effect of changing photon interaction depth in PET detectors can lead to better detector design, and an intuitive explanation of what sources of blurring may exist in the detector examined.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Positron-Emission Tomography/methods , Crystallization , Equipment Failure Analysis , Gamma Rays , Humans , Image Enhancement , Lighting , Optics and Photonics , Positron-Emission Tomography/instrumentation , Radiometry/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Technology, Radiologic
SELECTION OF CITATIONS
SEARCH DETAIL
...