Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 27(12): 2684-2701, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33644944

ABSTRACT

Polar bears (Ursus maritimus) are experiencing loss of sea ice habitats used to access their marine mammal prey. Simultaneously, ocean warming is changing ecosystems that support marine mammal populations. The interactive effects of sea ice and prey are not well understood yet may explain spatial-temporal variation in the response of polar bears to sea ice loss. Here, we examined the potential combined effects of sea ice, seal body condition, and atmospheric circulation patterns on the body condition, recruitment, diet, and feeding probability of 469 polar bears captured in the Chukchi Sea, 2008-2017. The body condition of ringed seals (Pusa hispida), the primary prey of females and subadults, was related to dietary proportions of ringed seal, feeding probability, and the body condition of females and cubs. In contrast, adult males consumed more bearded seals (Erignathus barbatus) and exhibited better condition when bearded seal body condition was higher. The litter size, number of yearlings per adult female, and the condition of dependent young were higher following winters characterized by low Arctic Oscillation conditions, consistent with a growing number of studies. Body condition, recruitment, and feeding probability were either not associated or negatively associated with sea ice conditions, suggesting that, unlike some subpopulations, Chukchi Sea bears are not currently limited by sea ice availability. However, spring sea ice cover declined 2% per year during our study reaching levels not previously observed in the satellite record and resulting in the loss of polar bear hunting and seal pupping habitat. Our study suggests that the status of ice seal populations is likely an important factor that can either compound or mitigate the response of polar bears to sea ice loss over the short term. In the long term, neither polar bears nor their prey are likely robust to limitless loss of their sea ice habitat.


Subject(s)
Caniformia , Seals, Earless , Ursidae , Animals , Arctic Regions , Ecosystem , Female , Ice Cover , Male
2.
PLoS One ; 15(8): e0237444, 2020.
Article in English | MEDLINE | ID: mdl-32813753

ABSTRACT

Animal structural body size and condition are often measured to evaluate individual health, identify responses to environmental change and food availability, and relate food availability to effects on reproduction and survival. A variety of condition metrics have been developed but relationships between these metrics and vital rates are rarely validated. Identifying an optimal approach to estimate the body condition of polar bears is needed to improve monitoring of their response to decline in sea ice habitat. Therefore, we examined relationships between several commonly used condition indices (CI), body mass, and size with female reproductive success and cub survival among polar bears (Ursus maritimus) measured in two subpopulations over three decades. To improve measurement and application of morphometrics and CIs, we also examined whether CIs are independent of age and structural size-an important assumption for monitoring temporal trends-and factors affecting measurement precision and accuracy. Maternal CIs and mass measured the fall prior to denning were related to cub production. Similarly, maternal CIs, mass, and length were related to the mass of cubs or yearlings that accompanied her. However, maternal body mass, but not CIs, measured in the spring was related to cub production and only maternal mass and length were related to the probability of cub survival. These results suggest that CIs may not be better indicators of fitness than body mass in part because CIs remove variation associated with body size that is important in affecting fitness. Further, CIs exhibited variable relationships with age for growing bears and were lower for longer bears despite body length being related to cub survival and female reproductive success. These results are consistent with findings from other species indicating that body mass is a useful metric to link environmental conditions and population dynamics.


Subject(s)
Body Size , Ursidae/physiology , Animals , Arctic Regions , Breeding , Ecosystem , Female , Male , Oceans and Seas , Reproduction/physiology , Seasons , Ursidae/growth & development
3.
Glob Chang Biol ; 24(1): 410-423, 2018 01.
Article in English | MEDLINE | ID: mdl-28994242

ABSTRACT

The effects of declining Arctic sea ice on local ecosystem productivity are not well understood but have been shown to vary inter-specifically, spatially, and temporally. Because marine mammals occupy upper trophic levels in Arctic food webs, they may be useful indicators for understanding variation in ecosystem productivity. Polar bears (Ursus maritimus) are apex predators that primarily consume benthic and pelagic-feeding ice-associated seals. As such, their productivity integrates sea ice conditions and the ecosystem supporting them. Declining sea ice availability has been linked to negative population effects for polar bears but does not fully explain observed population changes. We examined relationships between spring foraging success of polar bears and sea ice conditions, prey productivity, and general patterns of ecosystem productivity in the Beaufort and Chukchi Seas (CSs). Fasting status (≥7 days) was estimated using serum urea and creatinine levels of 1,448 samples collected from 1,177 adult and subadult bears across three subpopulations. Fasting increased in the Beaufort Sea between 1983-1999 and 2000-2016 and was related to an index of ringed seal body condition. This change was concurrent with declines in body condition of polar bears and observed changes in the diet, condition and/or reproduction of four other vertebrate consumers within the food chain. In contrast, fasting declined in CS polar bears between periods and was less common than in the two Beaufort Sea subpopulations consistent with studies demonstrating higher primary productivity and maintenance or improved body condition in polar bears, ringed seals, and bearded seals despite recent sea ice loss in this region. Consistency between regional and temporal variation in spring polar bear fasting and food web productivity suggests that polar bears may be a useful indicator species. Furthermore, our results suggest that spatial and temporal ecological variation is important in affecting upper trophic-level productivity in these marine ecosystems.


Subject(s)
Caniformia , Climate Change , Food Chain , Ursidae , Animals , Arctic Regions , Diet , Ice Cover , Population Dynamics , Reproduction , Seasons , Ursidae/blood
4.
Proc Biol Sci ; 283(1836)2016 08 17.
Article in English | MEDLINE | ID: mdl-27534959

ABSTRACT

Climate change is expected to alter many species' habitat. A species' ability to adjust to these changes is partially determined by their ability to adjust habitat selection preferences to new environmental conditions. Sea ice loss has forced polar bears (Ursus maritimus) to spend longer periods annually over less productive waters, which may be a primary driver of population declines. A negative population response to greater time spent over less productive water implies, however, that prey are not also shifting their space use in response to sea ice loss. We show that polar bear habitat selection in the Chukchi Sea has not changed between periods before and after significant sea ice loss, leading to a 75% reduction of highly selected habitat in summer. Summer was the only period with loss of highly selected habitat, supporting the contention that summer will be a critical period for polar bears as sea ice loss continues. Our results indicate that bears are either unable to shift selection patterns to reflect new prey use patterns or that there has not been a shift towards polar basin waters becoming more productive for prey. Continued sea ice loss is likely to further reduce habitat with population-level consequences for polar bears.


Subject(s)
Climate Change , Ecosystem , Ice Cover , Predatory Behavior , Ursidae , Animals , Population Dynamics , Seasons
5.
PLoS One ; 10(11): e0142213, 2015.
Article in English | MEDLINE | ID: mdl-26580809

ABSTRACT

Recent observations suggest that polar bears (Ursus maritimus) are increasingly using land habitats in some parts of their range, where they have minimal access to their preferred prey, likely in response to loss of their sea ice habitat associated with climatic warming. We used location data from female polar bears fit with satellite radio collars to compare land use patterns in the Chukchi Sea between two periods (1986-1995 and 2008-2013) when substantial summer sea-ice loss occurred. In both time periods, polar bears predominantly occupied sea-ice, although land was used during the summer sea-ice retreat and during the winter for maternal denning. However, the proportion of bears on land for > 7 days between August and October increased between the two periods from 20.0% to 38.9%, and the average duration on land increased by 30 days. The majority of bears that used land in the summer and for denning came to Wrangel and Herald Islands (Russia), highlighting the importance of these northernmost land habitats to Chukchi Sea polar bears. Where bears summered and denned, and how long they spent there, was related to the timing and duration of sea ice retreat. Our results are consistent with other studies supporting increased land use as a common response of polar bears to sea-ice loss. Implications of increased land use for Chukchi Sea polar bears are unclear, because a recent study observed no change in body condition or reproductive indices between the two periods considered here. This result suggests that the ecology of this region may provide a degree of resilience to sea ice loss. However, projections of continued sea ice loss suggest that polar bears in the Chukchi Sea and other parts of the Arctic may increasingly use land habitats in the future, which has the potential to increase nutritional stress and human-polar bear interactions.


Subject(s)
Ecosystem , Ice Cover , Ursidae/physiology , Animals , Arctic Regions , Climate Change , Female , Humans , Oceans and Seas , Reproduction/physiology , Russia , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...