Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Top Med Chem ; 20(7): 540-553, 2020.
Article in English | MEDLINE | ID: mdl-32003690

ABSTRACT

Psychiatric diagnosis has long been perceived as more of an art than a science since its foundations lie within the observation, and the self-report of the patients themselves and objective diagnostic biomarkers are lacking. Furthermore, the diagnostic tools in use not only stray away from the conventional medical framework but also remain invalidated with evidence-based concepts. However, neuroscience, as a source of valid objective knowledge has initiated the process of a paradigm shift underlined by the main concept of psychiatric disorders being "brain disorders". It is also a bridge closing the explanatory gap among the different fields of medicine via the translation of the knowledge within a multidisciplinary framework. The contemporary neuroimaging methods, such as fMRI provide researchers with an entirely new set of tools to reform the current status quo by creating an opportunity to define and validate objective biomarkers that can be translated into clinical practice. Combining multiple neuroimaging techniques with the knowledge of the role of genetic factors, neurochemical imbalance and neuroinflammatory processes in the etiopathophysiology of psychiatric disorders is a step towards a comprehensive biological explanation of psychiatric disorders and a final differentiation of psychiatry as a well-founded medical science. In addition, the neuroscientific knowledge gained thus far suggests a necessity for directional change to exploring multidisciplinary concepts, such as multiple causality and dimensionality of psychiatric symptoms and disorders. A concomitant viewpoint transition of the notion of validity in psychiatry with a focus on an integrative validatory approach may facilitate the building of a collaborative bridge above the wall existing between the scientific fields analyzing the mind and those studying the brain.


Subject(s)
Mental Disorders/diagnostic imaging , Neuroimaging/methods , Biomarkers/metabolism , Brain , Humans , Magnetic Resonance Imaging/methods , Monitoring, Physiologic , Multimodal Imaging , Prognosis , Translational Research, Biomedical , Validation Studies as Topic
2.
Neurotox Res ; 34(3): 489-510, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29736827

ABSTRACT

Accumulating evidence shows that nitro-oxidative pathways play an important role in the pathophysiology of major depressive disorder (MDD) and bipolar disorder (BD) and maybe anxiety disorders. The current study aims to examine superoxide dismutase (SOD1), catalase, lipid hydroperoxides (LOOH), nitric oxide metabolites (NOx), advanced oxidation protein products (AOPP), malondialdehyde (MDA), glutathione (GSH), paraoxonase 1 (PON1), high-density lipoprotein cholesterol (HDL), and uric acid (UA) in participants with and without generalized anxiety disorder (GAD) co-occurring or not with BD, MDD, or tobacco use disorder. Z unit-weighted composite scores were computed as indices of nitro-oxidative stress driving lipid and protein oxidation. SOD1, LOOH, NOx, and uric acid were significantly higher and HDL and PON1 significantly lower in participants with GAD than in those without GAD. GAD was more adequately predicted by increased SOD + LOOH + NOx and lowered HDL + PON1 composite scores. Composite scores of nitro-oxidative stress coupled with aldehyde and AOPP production were significantly increased in participants with comorbid GAD + MDD as compared with all other study groups, namely MDD, GAD + BD, BD, GAD, and healthy controls. In conclusion, GAD is characterized by increased nitro-oxidative stress and lipid peroxidation and lowered lipid-associated antioxidant defenses, while increased uric acid levels in GAD may protect against aldehyde production and protein oxidation. This study suggests that increased nitro-oxidative stress and especially increased SOD1 activity, NO production, and lipid peroxidation as well as lowered HDL-cholesterol and PON1 activity could be novel drug targets for GAD especially when comorbid with MDD.


Subject(s)
Anxiety Disorders/complications , Depressive Disorder, Major/complications , Lipid Peroxidation/physiology , Nitric Oxide/metabolism , Oxidative Stress/physiology , Adult , Advanced Oxidation Protein Products/metabolism , Analysis of Variance , Anxiety Disorders/epidemiology , Aryldialkylphosphatase/metabolism , Body Mass Index , Depressive Disorder, Major/epidemiology , Female , Humans , Lipoproteins, HDL/metabolism , Male , Malondialdehyde/metabolism , Middle Aged , Uric Acid/metabolism , Young Adult
3.
Folia Med (Plovdiv) ; 52(2): 5-13, 2010.
Article in English | MEDLINE | ID: mdl-20836391

ABSTRACT

This paper reviews the contemporary trends in the pathobiochemistry of neurodegenerative disorders with respect to their early predictive diagnosis and possible treatment interventions. If we consider the current epidemiological data related to neurodegenerative disorders, medicine is going to face in the near future latent pandemic situations. The introduction puts an emphasis on the emerging importance of one major cluster of neurodegenerative disorders: diseases of the abnormal protein beta-conformation. The cluster includes such significant diseases as Alzheimer, Pick, Huntington, Parkinson disease, as well as the transmissible spongiform encephalopathies (Creuzfeldt-Jakob disease). The pathogenetic mechanisms in the determination of this group of disorders are explored with an emphasis on the impairment of post-synthetic chaperone correction. The central role of a number of such protein products is discussed. In particular the pathobiochemical mechanisms concerning the formation of beta-amyloid, alpha and beta synucleins, scrapie isoform of the prion protein are presented. A new diagnostic principle allowing the early and specific diagnosis of the conformation diseases protein via amplification techniques is presented. These methods compete in sensitivity with the PCR methods and shows promises for effective treatment. In conclusion, beta-pathies are considered a suitable example for the modern concept of cluster and prototype diagnosis in medicine and especially in clinical neurosciences.


Subject(s)
Neurodegenerative Diseases/diagnosis , Alzheimer Disease/diagnosis , Creutzfeldt-Jakob Syndrome/diagnosis , Humans , Huntington Disease/diagnosis , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Parkinson Disease/diagnosis , Pick Disease of the Brain/diagnosis , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...