Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38720815

ABSTRACT

3D echocardiography (3DE) is the standard modality for visualizing heart valves and their surrounding anatomical structures. Commercial cardiovascular ultrasound systems commonly offer a set of parameters that allow clinical users to modify, in real time, visual aspects of the information contained in the echocardiogram. To our knowledge, there is currently no work that demonstrates if the methods currently used by commercial platforms are optimal. In addition, current platforms have limitations in adjusting the visibility of anatomical structures, such as reducing information that obstructs anatomical structures without removing essential clinical information. To overcome this, the present work proposes a new method for 3DE visualization based on "focus + context" (F+C), a concept which aims to present a detailed region of interest while preserving a less detailed overview of the surrounding context. The new method is intended to allow clinical users to modify parameter values differently within a certain region of interest, independently from the adjustment of contextual information. To validate this new method, a user study was conducted amongst clinical experts. As part of the user study, clinical experts adjusted parameters for five echocardiograms of patients with complete atrioventricular canal defect (CAVC) using both the method conventionally used by commercial platforms and the proposed method based on F+C. The results showed relevance for the F+C-based method to visualize 3DE of CAVC patients, where users chose significantly different parameter values with the F+C-based method.

2.
Front Cardiovasc Med ; 9: 886549, 2022.
Article in English | MEDLINE | ID: mdl-36148054

ABSTRACT

Cardiovascular disease is a significant cause of morbidity and mortality in the developed world. 3D imaging of the heart's structure is critical to the understanding and treatment of cardiovascular disease. However, open-source tools for image analysis of cardiac images, particularly 3D echocardiographic (3DE) data, are limited. We describe the rationale, development, implementation, and application of SlicerHeart, a cardiac-focused toolkit for image analysis built upon 3D Slicer, an open-source image computing platform. We designed and implemented multiple Python scripted modules within 3D Slicer to import, register, and view 3DE data, including new code to volume render and crop 3DE. In addition, we developed dedicated workflows for the modeling and quantitative analysis of multi-modality image-derived heart models, including heart valves. Finally, we created and integrated new functionality to facilitate the planning of cardiac interventions and surgery. We demonstrate application of SlicerHeart to a diverse range of cardiovascular modeling and simulation including volume rendering of 3DE images, mitral valve modeling, transcatheter device modeling, and planning of complex surgical intervention such as cardiac baffle creation. SlicerHeart is an evolving open-source image processing platform based on 3D Slicer initiated to support the investigation and treatment of congenital heart disease. The technology in SlicerHeart provides a robust foundation for 3D image-based investigation in cardiovascular medicine.

3.
Work ; 71(2): 299-308, 2022.
Article in English | MEDLINE | ID: mdl-35095009

ABSTRACT

BACKGROUND: Computer-intensive office work associations with health challenges may intensify following COVID-19 pandemic-related changes to home-based office work. OBJECTIVE: To determine working conditions, perception and physical elements affecting health after pivoting to full time home-work. METHODS: An online questionnaire addressed physical, productivity, motivation, and work-practice factors. Photos of the worker in their home-work environment showed side and front-back perspectives. RESULTS: Sixteen questionnaires were received, and 12 respondents supplied photos. Home and office workplace differences varied. Ten felt productivity was affected, most often positively. Four noted increased pain or fatigue intensity, particularly in the eyes, neck / head, lower back, and shoulders. Working posture was not optimal; six didn't use traditional chair-sitting for up to half the day. Forward and backward trunk inclination accounted for at least 10% of the workday for 12 respondents; lateral inclination affected ten and eight had unsupported legs. Fifteen used an adjustable chair, but photos revealed ergonomic recommendations were not consistently followed. Fourteen participants communicated regularly by telephone, eight only for moderate duration and ten using adapted telephone equipment. Half of the ROSA scores were high. CONCLUSIONS: Workers forced into telework during the pandemic experience positive and negative impacts. Postures vary more than in offices, potentially increasing health risk.


Subject(s)
COVID-19 , Pandemics , Ergonomics , Humans , SARS-CoV-2 , Teleworking
SELECTION OF CITATIONS
SEARCH DETAIL
...