Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 13(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-36292670

ABSTRACT

An optimized, well-tested and validated targeted genomic sequencing-based high-throughput assay is currently not available ready for routine biodefense and biosurveillance applications. Earlier, we addressed this gap by developing and establishing baseline comparisons of a multiplex end-point Polymerase Chain Reaction (PCR) assay followed by Oxford Nanopore Technology (ONT) based amplicon sequencing to real time PCR and customized data processing. Here, we expand upon this effort by identifying the optimal ONT library preparation method for integration into a novel software platform ONT-DART (ONT-Detection of Amplicons in Real-Time). ONT-DART is a dockerized, real-time, amplicon-sequence analysis workflow that is used to reproducibly process and filter read data to support actionable amplicon detection calls based on alignment metrics, within sample statistics, and no-template control data. This analysis pipeline was used to compare four ONT library preparation protocols using R9 and Flongle (FL) flow cells. The two 4-Primer methods tested required the shortest preparation times (5.5 and 6.5 h) for 48 libraries but provided lower fidelity data. The Native Barcoding and Ligation methods required longer preparation times of 8 and 12 h, respectively, and resulted in higher overall data quality. On average, data derived from R9 flow cells produced true positive calls for target organisms more than twice as fast as the lower throughput FL flow cells. These results suggest that utilizing the R9 flowcell with an ONT Native Barcoding amplicon library method in combination with ONT-DART platform analytics provides the best sequencing-based alternative to current PCR-based biodetection methods.


Subject(s)
Nanopores , Workflow , High-Throughput Nucleotide Sequencing/methods , Multiplex Polymerase Chain Reaction , Technology
2.
Int J Pharm ; 598: 120209, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33493603

ABSTRACT

Fluid bed granulation (FBG) is used extensively in the pharmaceutical industry and it is known to be a complex process, because the final product quality of the FBG process is determined by a complex interplay between the process parameters, fluid dynamics, and material properties. Due to this complexity, the FBG process is inherently nonlinear and as such difficult to scale-up. The field of chemical engineering has shown that complex nonlinear processes can be assumed to be linear under limiting conditions. We leverage this idea and present a linear scale-up approach (LiSA) to the FBG process. We derive the key LiSA equation from first principles, and then use it in combination with the similarity principle for scale-up purposes. Furthermore, we present a novel regression-based LiSA. The regression-based LiSA is founded on the hypothesis that there is a linear relationship between the moisture content and a scaling parameter called the Maus factor. This hypothesis is based on our experience and it is shown to be plausible due to high R2 values ranging from 0.86 to 0.98. Moreover, we successfully demonstrate that LiSA is effective under typical industrial process settings by applying it to two different formulations during pharmaceutical drug product development.


Subject(s)
Drug Industry , Technology, Pharmaceutical , Drug Compounding , Particle Size
3.
BMC Genomics ; 21(1): 166, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32066372

ABSTRACT

BACKGROUND: The state-of-the-art in nucleic acid based biodetection continues to be polymerase chain reaction (PCR), and many real-time PCR assays targeting biodefense pathogens for biosurveillance are in widespread use. These assays are predominantly singleplex; i.e. one assay tests for the presence of one target, found in a single organism, one sample at a time. Due to the intrinsic limitations of such tests, there exists a critical need for high-throughput multiplex assays to reduce the time and cost incurred when screening multiple targets, in multiple pathogens, and in multiple samples. Such assays allow users to make an actionable call while maximizing the utility of the small volumes of test samples. Unfortunately, current multiplex real-time PCR assays are limited in the number of targets that can be probed simultaneously due to the availability of fluorescence channels in real-time PCR instruments. RESULTS: To address this gap, we developed a pipeline in which the amplicons produced by a 14-plex end-point PCR assay using spiked samples were subsequently sequenced using Nanopore technology. We used bar codes to sequence multiple samples simultaneously, leading to the generation and subsequent analysis of sequence data resulting from a short sequencing run time (< 10 min). We compared the limits of detection (LoD) of real-time PCR assays to Oxford Nanopore Technologies (ONT)-based amplicon sequencing and estimated the sample-to-answer time needed for this approach. Overall, LoDs determined from the first 10 min of sequencing data were at least one to two orders of magnitude lower than real-time PCR. Given enough time, the amplicon sequencing approach is approximately 100 times more sensitive than real-time PCR, with detection of amplicon specific reads even at the lowest tested spiking concentration (around 2.5-50 Colony Forming Units (CFU)/ml). CONCLUSIONS: Based on these results, we propose amplicon sequencing assay as a viable alternative to replace the current real-time PCR based singleplex assays for higher throughput biodefense applications. We note, however, that targeted amplicon specific reads were not detectable even at the highest tested spike concentrations (2.5 X 104-5.0 X105 CFU/ml) without an initial amplification step, indicating that PCR is still necessary when utilizing this protocol.


Subject(s)
Bacteria/genetics , High-Throughput Nucleotide Sequencing , Multiplex Polymerase Chain Reaction , Nanopores , Nanotechnology , Real-Time Polymerase Chain Reaction , Humans , Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Sensitivity and Specificity
4.
Emerg Infect Dis ; 24(4)2018 04.
Article in English | MEDLINE | ID: mdl-29553922

ABSTRACT

The revelation in May 2015 of the shipment of γ irradiation-inactivated wild-type Bacillus anthracis spore preparations containing a small number of live spores raised concern about the safety and security of these materials. The finding also raised doubts about the validity of the protocols and procedures used to prepare them. Such inactivated reference materials were used as positive controls in assays to detect suspected B. anthracis in samples because live agent cannot be shipped for use in field settings, in improvement of currently deployed detection methods or development of new methods, or for quality assurance and training activities. Hence, risk-mitigated B. anthracis strains are needed to fulfill these requirements. We constructed a genetically inactivated or attenuated strain containing relevant molecular assay targets and tested to compare assay performance using this strain to the historical data obtained using irradiation-inactivated virulent spores.


Subject(s)
Anthrax/microbiology , Bacillus anthracis/physiology , Bacillus anthracis/radiation effects , Radiation , Spores, Bacterial/radiation effects , Animals , Bacillus anthracis/virology , Bacterial Toxins/genetics , Female , Gene Knockdown Techniques , Humans , Mice , Mutagenesis, Insertional , Plasmids/genetics , Recombination, Genetic , Reproducibility of Results , Virulence , Whole Genome Sequencing
5.
Int J Pharm ; 523(1): 366-375, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28347849

ABSTRACT

The aim of this study was to provide a systematic evaluation of various compression models (Percolation, Kawakita, Exponential model) in respect to predict tablet́s solid fraction for direct compression mixtures, based on single component compression analysis. Four mixtures were compressed over a wide pressure range at various fractions of microcrystalline cellulose (MCC) and pre-agglomerated lactose monohydrate (LAC) to compare an adjusted Percolation, Kawakita and a simple Exponential model. Based on single compression analysis of the pure excipients and application of these models, it was possible to predict the solid fraction of all mixtures. The Kawakita model showed overall superior prediction accuracy, whereas the Percolation model resulted in the best fit for mixtures containing microcrystalline cellulose in a range of 72%-48%. Both models were in good agreement at residuals below 3%.


Subject(s)
Models, Theoretical , Powders/chemistry , Tablets/chemistry , Cellulose/chemistry , Drug Compounding , Excipients/chemistry , Lactose/chemistry , Pressure
6.
Biosecur Bioterror ; 11(4): 237-50, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24320219

ABSTRACT

Ricin, a heterodimeric toxin that is present in the seeds of the Ricinus communis plant, is the biothreat agent most frequently encountered by law enforcement agencies in the United States. Even in untrained hands, the easily obtainable seeds can yield a highly toxic product that has been used in various types of threats, including "white-powder" letters. Although the vast majority of these threats are hoaxes, an impediment to accurate hazard assessments by first responders is the unreliability of rapid detection assays for ricin, such as lateral flow assays (LFAs). One of the complicating factors associated with LFAs is the incorporation of antibodies of poor specificity that cross-react with near-neighbors or with plant lectins that are capable of nonspecifically cross-linking the capture and detector antibodies. Because of the compelling and critical need to promote the interests of public safety and public health, the Department of Homeland Security conducted a comprehensive laboratory evaluation study of a commercial LFA for the rapid detection of ricin. This study was conducted using comprehensive inclusivity and exclusivity panels of ricin and near-neighbor plant materials, along with panels of lectins and "white-powders," to determine the specificity, sensitivity, limits of detection, dynamic range, and repeatability of the assay for the specific intended use of evaluating suspicious white powders and environmental samples in the field.


Subject(s)
Chemical Warfare Agents/analysis , Chromatography, Affinity/methods , Ricin/analysis , Air Filters , Environment , Humans , Laboratories , Limit of Detection , Plant Extracts/analysis , Plant Lectins/analysis , Powders/chemistry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...