Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int ; 140(1): 1-11, 2004 Feb 10.
Article in English | MEDLINE | ID: mdl-15013160

ABSTRACT

A collaborative exercise was carried out by the European DNA Profiling Group (EDNAP) in order to evaluate the distribution of mitochondrial DNA (mtDNA) heteroplasmy amongst the hairs of an individual who displays point heteroplasmy in blood and buccal cells. A second aim of the exercise was to study reproducibility of mtDNA sequencing of hairs between laboratories using differing chemistries, further to the first mtDNA reproducibility study carried out by the EDNAP group. Laboratories were asked to type 2 sections from each of 10 hairs, such that each hair was typed by at least two laboratories. Ten laboratories participated in the study, and a total of 55 hairs were typed. The results showed that the C/T point heteroplasmy observed in blood and buccal cells at position 16234 segregated differentially between hairs, such that some hairs showed only C, others only T and the remainder, C/T heteroplasmy at varying ratios. Additionally, differential segregation of heteroplasmic variants was confirmed in independent extracts at positions 16093 and the poly(C) tract at 302-309, whilst a complete A-G transition was confirmed at position 16129 in one hair. Heteroplasmy was observed at position 16195 on both strands of a single extract from one hair segment, but was not observed in the extracts from any other segment of the same hair. Similarly, heteroplasmy at position 16304 was observed on both strands of a single extract from one hair. Additional variants at positions 73, 249 and the HVII poly(C) region were reported by one laboratory; as these were not confirmed in independent extracts, the possibility of contamination cannot be excluded. Additionally, the electrophoresis and detection equipment used by this laboratory was different to those of the other laboratories, and the discrepancies at position 249 and the HVII poly(C) region appear to be due to reading errors that may be associated with this technology. The results, and their implications for forensic mtDNA typing, are discussed in the light of the biology of hair formation.


Subject(s)
DNA, Mitochondrial/analysis , Hair/chemistry , Sequence Analysis, DNA , DNA, Mitochondrial/genetics , Genetic Variation , Humans , Mutation
2.
Forensic Sci Int ; 105(3): 171-83, 1999 Nov 08.
Article in English | MEDLINE | ID: mdl-10643651

ABSTRACT

Hyperpolymorphic short tandem repetitive DNA sequences, STRs or microsatellites, have become widely used in human identification, particularly in criminal cases and in mass disasters. In such cases the substrates for the analyses may be decomposed biological material, a fact that has to be taken into account when choosing the appropriate casework methods. In this paper we report the evaluation of five different DNA extraction methods, namely the phenol-chloroform, the silica based, the InstaGene Matrix (BioTest), the glass fiber filter, and the Chelex based methods. The substrates for the analyses are decomposed human liver tissue specimens from forensic autopsy cases. Extracted DNA was quantified and DNA profiled by a set of seven STRs. We have compared laboratory time consumption and costs of the five methods, showing that the Chelex method is the more rapid and less expensive of the methods, the phenol-chlorophorm and silica extractions being the most time consuming and resource demanding ones. A full profile was obtained by the silica method in nine out of ten cases and this method failed to give a reliable type in four out of 70 STR analyses. The phenol-chlorophorm and the glass fiber filter methods failed in 16 analyses, the InstaGene Matrix (BioTest) in 25 and the Chelex extracts in 56 of the 70 STR analyses. By multiple logistic regression we show that the difference between the silica procedure and the other methods are statistically significant. In our hands, the silica gel extraction procedure is an obvious choice when the biological material available is decomposed human tissue--even if this procedure is one of the more laborious ones.


Subject(s)
Autolysis/genetics , Autopsy/methods , DNA Fingerprinting/methods , DNA/isolation & purification , Electrophoresis/methods , Liver/pathology , Microsatellite Repeats/genetics , Chelating Agents , Chloroform , Costs and Cost Analysis , Electrophoresis/economics , Electrophoresis/standards , Glass , Humans , Logistic Models , Phenol , Polymerase Chain Reaction/methods , Polystyrenes , Polyvinyls , Reproducibility of Results , Silicon Dioxide , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...