Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 10(13): 2102-9, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24651906

ABSTRACT

Droplets impacting on a superheated surface can either exhibit a contact boiling regime, in which they make direct contact with the surface and boil violently, or a film boiling regime, in which they remain separated from the surface by their own vapor. The transition from the contact to the film boiling regime depends not only on the temperature of the surface and the kinetic energy of the droplet, but also on the size of the structures fabricated on the surface. Here we experimentally show that surfaces covered with carbon-nanofibers delay the transition to film boiling to much higher temperatures compared to smooth surfaces. We present physical arguments showing that, because of the small scale of the carbon fibers, they are cooled by the vapor flow just before the liquid impact, thus permitting contact boiling up to much higher temperatures than on smooth surfaces. We also show that as long as the impact is in the film boiling regime, the spreading factor of impacting droplets is consistent with the We(3/10) scaling (with We being the Weber number) as predicted for large We by a scaling analysis.

2.
Phys Rev Lett ; 108(3): 036101, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22400761

ABSTRACT

At the impact of a liquid droplet on a smooth surface heated above the liquid's boiling point, the droplet either immediately boils when it contacts the surface ("contact boiling"), or without any surface contact forms a Leidenfrost vapor layer towards the hot surface and bounces back ("gentle film boiling"), or both forms the Leidenfrost layer and ejects tiny droplets upward ("spraying film boiling"). We experimentally determine conditions under which impact behaviors in each regime can be realized. We show that the dimensionless maximum spreading γ of impacting droplets on the heated surfaces in both gentle and spraying film boiling regimes shows a universal scaling with the Weber number We (γ~We(2/5)), which is much steeper than for the impact on nonheated (hydrophilic or hydrophobic) surfaces (γ~We(1/4)). We also interferometrically measure the vapor thickness under the droplet.

SELECTION OF CITATIONS
SEARCH DETAIL
...