Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Occup Med Toxicol ; 3: 5, 2008 Feb 20.
Article in English | MEDLINE | ID: mdl-18289370

ABSTRACT

BACKGROUND: Platelet activating factor and tachykinins (substance P, neurokinin A, neurokinin B) are important mediators contributing to increased airway secretion in the context of different types of respiratory diseases including acute and chronic asthma. Leukotriene receptor antagonists are recommended as add-on therapy for this disease. The cys-leukotriene-1 receptor antagonist montelukast has been used in clinical asthma therapy during the last years. Besides its inhibitory action on bronchoconstriction, only little is known about its effects on airway secretions. Therefore, the aim of this study was to evaluate the effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity. METHODS: The effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity in the rat were assessed by quantification of secreted 35SO4 labelled mucus macromolecules using the modified Ussing chamber technique. RESULTS: Platelet activating factor potently stimulated airway secretion, which was completely inhibited by the platelet activating factor receptor antagonist WEB 2086 and montelukast. In contrast, montelukast had no effect on tachykinin induced tracheal secretory activity. CONCLUSION: Cys-leukotriene-1 receptor antagonism by montelukast reverses the secretagogue properties of platelet activating factor to the same degree as the specific platelet activating factor antagonist WEB 2086 but has no influence on treacheal secretion elicited by tachykinins. These results suggest a role of montelukast in the signal transduction pathway of platelet activating factor induced secretory activity of the airways and may further explain the beneficial properties of cys-leukotriene-1 receptor antagonists.

2.
J Occup Med Toxicol ; 1: 12, 2006 Jun 07.
Article in English | MEDLINE | ID: mdl-16759388

ABSTRACT

Hypersecretion and chronic phlegm are major symptoms of chronic obstructive pulmonary disease (COPD) but animal models of COPD with a defined functional hypersecretion have not been established so far. To identify an animal model of combined morphological signs of airway inflammation and functional hypersecretion, rats were continuously exposed to different levels of sulfur dioxide (SO2, 5 ppm, 10 ppm, 20 ppm, 40 ppm, 80 ppm) for 3 (short-term) or 20-25 (long-term) days. Histology revealed a dose-dependent increase in edema formation and inflammatory cell infiltration in short-term-exposed animals. The submucosal edema was replaced by fibrosis after long-term-exposure. The basal secretory activity was only significantly increased in the 20 ppm group. Also, stimulated secretion was significantly increased only after exposure to 20 ppm. BrdU-assays and AgNOR-analysis demonstrated cellular metaplasia and glandular hypertrophy rather than hyperplasia as the underlying morphological correlate of the hypersecretion. In summary, SO2-exposure can lead to characteristic airway remodeling and changes in mucus secretion in rats. As only long-term exposure to 20 ppm leads to a combination of hypersecretion and airway inflammation, only this mode of exposure should be used to mimic human COPD. Concentrations less or higher than 20 ppm or short term exposure do not induce the respiratory symptom of hypersecretion. The present model may be used to characterize the effects of new compounds on mucus secretion in the background of experimental COPD.

3.
Eur J Pharmacol ; 527(1-3): 150-6, 2005 Dec 19.
Article in English | MEDLINE | ID: mdl-16310765

ABSTRACT

Cysteinyl-leukotriene-1 receptor antagonists are important tools in the therapy of asthma. Although many studies have been performed concerning their effects on airway smooth muscle tone, there are no basic data on their effects on airway secretions. Therefore, we assessed the effects of zafirlukast and montelukast on rat tracheal secretion by quantification of secreted 35S04 labelled mucus macromolecules, and determined the influence of the arachidonic acid pathway using the modified Ussing chamber technique. Zafirlukast (432+/-89.99%) and montelukast (167+/-16.74%) stimulated rat tracheal secretion. This was abolished by application of eicosatetraenoic acid, an inhibitor of the arachidonic acid metabolism. Whereas inhibition of cyclooxygenase did not show any significant effect on zafirlukast induced secretion, blockade of the 5-lipoxygenase pathway markedly reduced the secretagogue effects. Furthermore, inhibition of phosphatidylinositol-3-kinase completely inhibited the effects elicited by zafirlukast. Additional experiments revealed secretagogue effects of zafirlukast also in human bronchial tissue. In conclusion, zafirlukast is a potent inducer of tracheal secretion. Obviously, these effects are induced by involvement of a phosphatidylinositol-3-kinase dependent pathway mediated by products of the arachidonic acid metabolism.


Subject(s)
Leukotriene Antagonists/pharmacology , Tosyl Compounds/pharmacology , Trachea/drug effects , 5,8,11,14-Eicosatetraynoic Acid/pharmacology , Acetates/pharmacology , Animals , Arachidonic Acid/metabolism , Bronchi/drug effects , Bronchi/metabolism , Chromones/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Cyclopropanes , Dose-Response Relationship, Drug , Humans , Ibuprofen/pharmacology , Indoles/pharmacology , Lipoxygenase Inhibitors/pharmacology , Male , Membrane Proteins/metabolism , Morpholines/pharmacology , Phenylcarbamates , Phosphoinositide-3 Kinase Inhibitors , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Leukotriene/metabolism , Sulfides , Sulfonamides , Trachea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...