Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med ; 21(1): 434, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957618

ABSTRACT

BACKGROUND: The widening of group-level socioeconomic differences in body mass index (BMI) has received considerable research attention. However, the predictive power of socioeconomic position (SEP) indicators at the individual level remains uncertain, as does the potential temporal variation in their predictive value. Examining this is important given the increasing incorporation of SEP indicators into predictive algorithms and calls to reduce social inequality to tackle the obesity epidemic. We thus investigated SEP differences in BMI over three decades of the obesity epidemic in England, comparing population-wide (SEP group differences in mean BMI) and individual-level (out-of-sample prediction of individuals' BMI) approaches to understanding social inequalities. METHODS: We used repeated cross-sectional data from the Health Survey for England, 1991-2019. BMI (kg/m2) was measured objectively, and SEP was measured via educational attainment, occupational class, and neighbourhood index of deprivation. We ran random forest models for each survey year and measure of SEP adjusting for age and sex. RESULTS: The mean and variance of BMI increased within each SEP group over the study period. Mean differences in BMI by SEP group also increased: differences between lowest and highest education groups were 1.0 kg/m2 (0.4, 1.6) in 1991 and 1.3 kg/m2 (0.7, 1.8) in 2019. At the individual level, the predictive capacity of SEP was low, though increased in later years: including education in models improved predictive accuracy (mean absolute error) by 0.14% (- 0.9, 1.08) in 1991 and 1.05% (0.18, 1.82) in 2019. Similar patterns were obtained for occupational class and neighbourhood deprivation and when analysing obesity as an outcome. CONCLUSIONS: SEP has become increasingly important at the population (group difference) and individual (prediction) levels. However, predictive ability remains low, suggesting limited utility of including SEP in prediction algorithms. Assuming links are causal, abolishing SEP differences in BMI could have a large effect on population health but would neither reverse the obesity epidemic nor reduce much of the variation in BMI.


Subject(s)
Obesity , Social Class , Humans , Body Mass Index , Cross-Sectional Studies , Socioeconomic Factors , Obesity/diagnosis , Obesity/epidemiology
2.
Lancet Public Health ; 6(8): e598-e607, 2021 08.
Article in English | MEDLINE | ID: mdl-34332672

ABSTRACT

BACKGROUND: Inequalities in the trajectories of body composition in childhood and adolescence have been infrequently studied. Despite the importance of environmental factors in obesity development, little research has looked at area-level socioeconomic position, independent of family socioeconomic position. We aimed to assess how inequalities in body composition develop with age. METHODS: The Millennium Cohort Study is a longitudinal study of 19 243 families who had a child born between 2000 and 2002 in the UK. Multilevel growth curve models were applied to examine change in fat mass index (FMI), fat free mass index (FFMI; using the Benn index), and fat mass to fat free mass ratio (FM:FFM), measured using Bioelectrical Impedance Analysis, from ages 7 years to 17 years by the Index of Multiple Deprivation (IMD) and household income at baseline. FINDINGS: Inequalities in FMI and FM:FFM ratio are evident at age 7 years and widen with age. At age 17 years, adolescents in the most disadvantaged IMD group had FMI 0·57 kg/mB (B=Benn parameter; 95% CI 0·43 to 0·70) higher and FM:FFM ratio 0·037 (95% CI 0·026 to 0·047) higher compared with the most advantaged group. Disadvantaged socioeconomic position is associated with higher FFMI but is reversed in adolescence after adjustment for FMI. Inequalities were greater in girls at age 7 years (mean FMI 0·22 kg/mB; 95% CI 0·13 to 0·32) compared with boys of the same age (0·05 kg/mB; -0·04 to 0·15, p=0·3), but widen fastest in boys, especially for FMI, in which there was over an 11 times increase in the inequality from age 7 years of 0·05kg/mB (95% CI -0·04 to 0·15) to 0·62 kg/mB at 17 years (0·42 to 0·82). Inequalities for the IMD were similar to income, and persisted at age 17 years independent of family socioeconomic position. INTERPRETATION: Childhood and adolescence is an important period to address inequalities in body composition, as they emerge and widen. Policies should consider FFM as well as FM, and inequalities in the environment. FUNDING: Medical Research Council, Economic and Social Research Council.


Subject(s)
Body Composition , Body-Weight Trajectory , Family , Health Status Disparities , Pediatric Obesity/epidemiology , Residence Characteristics/statistics & numerical data , Adolescent , Child , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Risk Factors , Socioeconomic Factors , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...