Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Toxicon ; 117: 1-12, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26996495

ABSTRACT

Commonly, phospholipases A2 (PLA2s) play key roles in the pathogenesis of the local tissue damage characteristic of crotaline and viperine snake envenomations. Crotalus oreganus lutosus snake venom has not been extensively studied; therefore, the characterization of its components represents a valuable biotechnological tool for studying pathophysiological processes of envenoming and for gaining a deeper understanding of its biological effects. In this study, for the first time, a basic PLA2 myotoxin, ColTx-I, was purified from C. o. lutosus through two chromatographic steps. ColTx-I is monomeric with calculated molecular mass weight (Mw) of 14,145 Da and a primary structure closely related to basic PLA2s from viperid venoms. The pure enzyme has a specific activity of 15.87 ± 0.65 nmol/min/mg at optimal conditions (pH 8.0 and 37 °C). ColTx-I activity was found to be dependent on Ca(2+), as its substitution by other ionic species as well as the addition of chelating agents significantly reduced its phospholipase activity. In vivo, ColTx-I triggered dose-dependent inflammatory responses, measured using the paw edema model, with an increase in IL-6 levels, systemic and local myotoxicity, characterized by elevated plasma creatine kinase activity. ColTx-I induced a complex series of degenerative events associated with edema, inflammatory infiltrate and skeletal muscle necrosis. These biochemical and functional results suggest that ColTx-I, a myotoxic and inflammatory mediator, plays a relevant role in C. o. lutosus envenomation. Thus, detailed studies on its mechanism of action, such as evaluating the synergism between ColTx-I and other venom components may reveal targets for the development of more specific and effective therapies.


Subject(s)
Crotalid Venoms/chemistry , Crotalus , Phospholipases A2/toxicity , Reptilian Proteins/toxicity , Animals , Mice , Phospholipases A2/chemistry , Phospholipases A2/isolation & purification , Phylogeny , Reptilian Proteins/chemistry , Reptilian Proteins/isolation & purification , Sequence Alignment , Sequence Analysis, Protein
2.
J Colloid Interface Sci ; 438: 39-46, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25454423

ABSTRACT

Conformational changes of the cyclic (Lo) peptide Labaditin (VWTVWGTIAG) and its linear analogue (L1) promoted by presence of anionic sodium dodecyl sulfate (SDS) and zwitterionic L-α-Lysophosphatidylcholine (LPC) micelles were investigated. Results from λ(max) blue-shift of tryptophan fluorescence emission combined with Stern-Volmer constants values and molecular dynamics (MD) simulations indicated that L1 interacts with SDS micelles to a higher extent than does Lo. Further, the MD simulation demonstrated that both Lo and L1 interact similarly with LPC micelles, being preferentially located at the micelle/water interface. The peptide-micelle interaction elicits conformational changes in the peptides. Lo undergoes limited modifications and presents unordered structure in both LPC and SDS micelles. On the other hand, L1 displays a random-coil structure in aqueous medium, pH 7.0, and it acquires a ß-structure upon interaction with SDS and LPC, albeit with structural differences in each medium.


Subject(s)
Micelles , Peptides, Cyclic/chemistry , Peptides/chemistry , Anions/chemistry , Circular Dichroism , Molecular Dynamics Simulation
4.
Biomed Res Int ; 2014: 981923, 2014.
Article in English | MEDLINE | ID: mdl-24901004

ABSTRACT

Crude venom of Bothrops jararacussu and isolated phospholipases A2 (PLA2) of this toxin (BthTX-I and BthTX-II) were chemically modified (alkylation) by p-bromophenacyl bromide (BPB) in order to study antibody production capacity in function of the structure-function relationship of these substances (crude venom and PLA2 native and alkylated). BthTX-II showed enzymatic activity, while BthTX-I did not. Alkylation reduced BthTX-II activity by 50% while this process abolished the catalytic and myotoxic activities of BthTX-I, while reducing its edema-inducing activity by about 50%. Antibody production against the native and alkylated forms of BthTX-I and -II and the cross-reactivity of antibodies to native and alkylated toxins did not show any apparent differences and these observations were reinforced by surface plasmon resonance (SPR) data. Histopathological analysis of mouse gastrocnemius muscle sections after injection of PBS, BthTX-I, BthTX-II, or both myotoxins previously incubated with neutralizing antibody showed inhibition of the toxin-induced myotoxicity. These results reveal that the chemical modification of the phospholipases A2 (PLA2) diminished their toxicity but did not alter their antigenicity. This observation indicates that the modified PLA2 may provide a biotechnological tool to attenuate the toxicity of the crude venom, by improving the production of antibodies and decreasing the local toxic effects of this poisonous substance in animals used to produce antivenom.


Subject(s)
Alkylation/immunology , Antibodies/immunology , Bothrops/metabolism , Crotalid Venoms/metabolism , Histidine/metabolism , Phospholipases A2/metabolism , Animals , Antivenins/immunology , Antivenins/metabolism , Bothrops/immunology , Cross Reactions/immunology , Crotalid Venoms/immunology , Histidine/immunology , Male , Mice , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , Phospholipases A2/immunology
5.
Biomed Res Int ; 2014: 654170, 2014.
Article in English | MEDLINE | ID: mdl-24707493

ABSTRACT

Currently, Crotalus viridis was divided into two species: Crotalus viridis and Crotalus oreganus. The current classification divides "the old" Crotalus viridis into two new and independent species: Crotalus viridis (subspecies: viridis and nuntius) and Crotalus oreganus (subspecies: abyssus, lutosus, concolor, oreganus, helleri, cerberus, and caliginis). The analysis of a product from cDNA (E6d), derived from the gland of a specie Crotalus viridis viridis, was found to produce an acid phospholipase A2. In this study we isolated and characterized a PLA2 (D49) from Crotalus oreganus abyssus venom. Our studies show that the PLA2 produced from the cDNA of Crotalus viridis viridis (named E6d) is exactly the same PLA2 primary sequence of amino acids isolated from the venom of Crotalus oreganus abyssus. Thus, the PLA2 from E6d cDNA is actually the same PLA2 presented in the venom of Crotalus oreganus abyssus and does not correspond to the venom from Crotalus viridis viridis. These facts highlight the importance of performing more studies on subspecies of Crotalus oreganus and Crotalus viridis, since the old classification may have led to mixed results or mistaken data.


Subject(s)
Amino Acids/chemistry , Crotalid Venoms/enzymology , Phospholipases A2/chemistry , Animals , Crotalus , Phospholipases A2/isolation & purification , United States
6.
Biomed Res Int ; 2013: 153045, 2013.
Article in English | MEDLINE | ID: mdl-24171158

ABSTRACT

Ophidian envenomation is an important health problem in Brazil and other South American countries. In folk medicine, especially in developing countries, several vegetal species are employed for the treatment of snakebites in communities that lack prompt access to serum therapy. However, the identification and characterization of the effects of several new plants or their isolated compounds, which are able to inhibit the activities of snake venom, are extremely important and such studies are imperative. Snake venom contains several organic and inorganic compounds; phospholipases A2 (PLA2s) are one of the principal toxic components of venom. PLA2s display a wide variety of pharmacological activities, such as neurotoxicity, myotoxicity, cardiotoxicity, anticoagulant, hemorrhagic, and edema-inducing effects. PLA2 inhibition is of pharmacological and therapeutic interests as these enzymes are involved in several inflammatory diseases. This review describes the results of several studies of plant extracts and their isolated active principles, when used against crude snake venoms or their toxic fractions. Isolated inhibitors, such as steroids, terpenoids, and phenolic compounds, are able to inhibit PLA2s from different snake venoms. The design of specific inhibitors of PLA2s might help in the development of new pharmaceutical drugs, more specific antivenom, or even as alternative approaches for treating snakebites.


Subject(s)
Biological Products/isolation & purification , Phospholipase A2 Inhibitors/isolation & purification , Plants/chemistry , Snake Venoms/chemistry , Animals , Biological Products/chemistry , Brazil , Phospholipase A2 Inhibitors/chemistry
7.
Biochemistry (Mosc) ; 78(2): 194-203, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23581990

ABSTRACT

The in vitro effects of BaltTX-I, a catalytically inactive Lys49 variant of phospholipase A2 (PLA2), and BaltTX-II, an Asp49 catalytically active PLA2 isolated from Bothrops alternatus snake venom, on thioglycollate-elicited macrophages (TG-macrophages) were investigated. At non-cytotoxic concentrations, the secretory PLA2 BaltTX-I but not BaltTX-II stimulated complement receptor-mediated phagocytosis. Pharmacological treatment of TG-macrophages with staurosporine, a protein kinase C (PKC) inhibitor, showed that this kinase is involved in the increase of serum-opsonized zymosan phagocytosis induced by BaltTX-I but not BaltTX-II secretory PLA2, suggesting that PKC may be involved in the stimulatory effect of this toxin in serum-opsonized zymosan phagocytosis. Moreover, BaltTX-I and -II induced superoxide production by TG-macrophages. This superoxide production stimulated by both PLA2s was abolished after treatment of cells with staurosporine, indicating that PKC is an important signaling pathway for the production of this radical. Our experiments showed that, at non-cytotoxic concentrations, BaltTX-I may upregulate phagocytosis via complement receptors, and that both toxins upregulated the respiratory burst in TG-macrophages.


Subject(s)
Bothrops , Macrophages/drug effects , Phospholipases A2/pharmacology , Snake Venoms/chemistry , Amino Acid Sequence , Animals , Cell Survival/drug effects , Macrophages/cytology , Male , Mice , Molecular Sequence Data , Phospholipases A2/isolation & purification , Sequence Alignment , Superoxides/metabolism
8.
Biochim Biophys Acta ; 1828(5): 1384-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23376656

ABSTRACT

Using phase contrast and fluorescence microscopy we study the influence of the alkylphospholipid, ALP, 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate, ODPC, in giant unilamellar vesicles, GUVs, composed of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), brain sphingomyelin (SM) and cholesterol (Chol). The results show that adding 100µM ODPC (below CMC) to the outer solution of GUVs promotes DOPC membrane disruption over a period of 1h of continuous observation. On the other hand, the presence of SM and Chol in homogeneous fluid lipid bilayers protects the membrane from disruption. Interestingly, by adding 100µM ODPC to GUVs containing DOPC:SM:Chol (1:1:1), which display liquid ordered (Lo)-liquid disordered (Ld) phase coexistence, the domains rapidly disappear in less than 1min of ODPC contact with the membrane. The lipids are subsequently redistributed to liquid domains within a time course of 14-18min, reflecting that the homogenous phase was not thermodynamically stable, followed by rupture of the GUVs. A similar mechanism of action is also observed for perifosine, although to a larger extent. Therefore, the initial stage of lipid raft disruption by both ODPC and perifosine, and maybe other ALPS, by promoting lipid mixing, may be correlated with their toxicity upon neoplastic cells, since selective (dis)association of essential proteins within lipid raft microdomains must take place in the plasma membrane.


Subject(s)
Glycerophospholipids/chemistry , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Membrane Microdomains/chemistry , Unilamellar Liposomes/chemistry , Cholesterol/chemistry , Membrane Fluidity , Microscopy, Fluorescence , Microscopy, Phase-Contrast , Models, Chemical , Models, Molecular , Phosphatidylcholines/chemistry , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Sphingomyelins/chemistry , Thermodynamics
9.
Biophys Rev ; 4(1): 67-81, 2012 Mar.
Article in English | MEDLINE | ID: mdl-28510001

ABSTRACT

Proteoliposomes are systems that mimic lipid membranes (liposomes) to which a protein has been incorporated or inserted. During the last decade, these systems have gained prominence as tools for biophysical studies on lipid-protein interactions as well as for their biotechnological applications. Proteoliposomes have a major advantage when compared with natural membrane systems, since they can be obtained with a smaller number of lipidic (and protein) components, facilitating the design and interpretation of certain experiments. However, they have the disadvantage of requiring methodological standardization for incorporation of each specific protein, and the need to verify that the reconstitution procedure has yielded the correct orientation of the protein in the proteoliposome system with recovery of its functional activity. In this review, we chose two proteins under study in our laboratory to exemplify the steps necessary for the standardization of the reconstitution of membrane proteins in liposome systems: (1) alkaline phosphatase, a protein with a glycosylphosphatidylinositol anchor, and (2) Na,K-ATPase, an integral membrane protein. In these examples, we focus on the production of the specific proteoliposomes, as well as on their biochemical and biophysical characterization, with emphasis on studies of lipid-protein interactions. We conclude the chapter by highlighting current prospects of this technology for biotechnological applications, including the construction of nanosensors and of a multi-protein nanovesicular biomimetic to study the processes of initiation of skeletal mineralization.

10.
J. venom. anim. toxins incl. trop. dis ; 17(4): 430-441, 2011. graf
Article in English | LILACS | ID: lil-623506

ABSTRACT

Envenomations caused by different species of Bothrops snakes result in severe local tissue damage, hemorrhage, pain, myonecrosis, and inflammation with a significant leukocyte accumulation at the bite site. However, the activation state of leukocytes is still unclear. According to clinical cases and experimental work, the local effects observed in envenenomation by Bothrops alternatus are mainly the appearance of edema, hemorrhage, and necrosis. In this study we investigated the ability of Bothrops alternatus crude venom to induce macrophage activation. At 6 to 100 »g/mL, BaV is not toxic to thioglycollate-elicited macrophages; at 3 and 6 »g/mL, it did not interfere in macrophage adhesion or detachment. Moreover, at concentrations of 1.5, 3, and 6 »g/mL the venom induced an increase in phagocytosis via complement receptor one hour after incubation. Pharmacological treatment of thioglycollate-elicited macrophages with staurosporine, a protein kinase (PKC) inhibitor, abolished phagocytosis, suggesting that PKC may be involved in the increase of serum-opsonized zymosan phagocytosis induced by BaV. Moreover, BaV also induced the production of anion superoxide (O2-) by thioglycollate-elicited macrophages. This BaV stimulated superoxide production was abolished after treating the cells with staurosporine, indicating that PKC is an important signaling pathway for the production of this radical. Based on these results, we suggest that phagocytosis and reactive oxygen species are involved in the pathogenesis of local tissue damage characteristic of Bothrops spp. envenomations.


Subject(s)
Animals , Animals, Poisonous , Bothrops , Crotalid Venoms , Macrophages , Phagocytosis , Protein Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...