Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 181(3): 1129-45, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19104079

ABSTRACT

Telomeres and subtelomere regions have vital roles in cellular homeostasis and can facilitate niche adaptation. However, information on telomere/subtelomere structure is still limited to a small number of organisms. Prior to initiation of this project, the Neurospora crassa genome assembly contained only 3 of the 14 telomeres. The missing telomeres were identified through bioinformatic mining of raw sequence data from the genome project and from clones in new cosmid and plasmid libraries. Their chromosomal locations were assigned on the basis of paired-end read information and/or by RFLP mapping. One telomere is attached to the ribosomal repeat array. The remaining chromosome ends have atypical structures in that they lack distinct subtelomere domains or other sequence features that are associated with telomeres in other organisms. Many of the chromosome ends terminate in highly AT-rich sequences that appear to be products of repeat-induced point mutation, although most are not currently repeated sequences. Several chromosome termini in the standard Oak Ridge wild-type strain were compared to their counterparts in an exotic wild type, Mauriceville. This revealed that the sequences immediately adjacent to the telomeres are usually genome specific. Finally, despite the absence of many features typically found in the telomere regions of other organisms, the Neurospora chromosome termini still retain the dynamic nature that is characteristic of chromosome ends.


Subject(s)
Chromosomes, Fungal/genetics , Neurospora crassa/genetics , Telomere/genetics , Base Composition , Cloning, Molecular , Cosmids/genetics , DNA Restriction Enzymes/metabolism , Databases, Genetic , Genes, Fungal , Genetic Linkage , Molecular Sequence Data , Nucleotides/chemistry , Nucleotides/genetics , Polymorphism, Restriction Fragment Length , Repetitive Sequences, Nucleic Acid , Software , Species Specificity , Systems Biology , Telomere/chemistry , Telomere/metabolism
2.
PLoS One ; 2(5): e423, 2007 May 09.
Article in English | MEDLINE | ID: mdl-17487271

ABSTRACT

Members of the genus Pneumocystis are fungal pathogens that cause pneumonia in a wide variety of mammals with debilitated immune systems. Little is known about their basic biological functions, including life cycle, since no species can be cultured continuously outside the mammalian lung. To better understand the pathological process, about 4500 ESTS derived from sequencing of the poly(A) tail ends of P. carinii mRNAs during fulminate infection were annotated and functionally characterized as unassembled reads, and then clustered and reduced to a unigene set with 1042 members. Because of the presence of sequences from other microbial genomes and the rat host, the analysis and compression to a unigene set was necessarily an iterative process. BLASTx analysis of the unassembled reads (UR) vs. the Uni-Prot and TREMBL databases revealed 56% had similarities to existing polypeptides at E values of

Subject(s)
Carbohydrate Metabolism , Gene Expression Profiling , Pneumocystis carinii/genetics , Citric Acid Cycle , Expressed Sequence Tags , Gluconeogenesis , Glycolysis , Glyoxylates/metabolism , Pentose Phosphate Pathway , Pneumocystis carinii/metabolism , Pneumocystis carinii/pathogenicity , RNA, Fungal/genetics , RNA, Messenger/genetics
3.
Evol Bioinform Online ; 3: 15-25, 2007 Feb 14.
Article in English | MEDLINE | ID: mdl-19430601

ABSTRACT

Efforts to generate whole genome assemblies and dense genetic maps have provided a wealth of gene positional information for several vertebrate species. Comparing the relative location of orthologous genes among these genomes provides perspective on genome evolution and can aid in translating genetic information between distantly related organisms. However, large-scale comparisons between genetic maps and genome assemblies can prove challenging because genetic markers are commonly derived from transcribed sequences that are incompletely and variably annotated. We developed the program MapToGenome as a tool for comparing transcript maps and genome assemblies. MapToGenome processes sequence alignments between mapped transcripts and whole genome sequence while accounting for the presence of intronic sequences, and assigns orthology based on user-defined parameters. To illustrate the utility of this program, we used MapToGenome to process alignments between vertebrate genetic maps and genome assemblies 1) self/self alignments for maps and assemblies of the rat and zebrafish genome; 2) alignments between vertebrate transcript maps (rat, salamander, zebrafish, and medaka) and the chicken genome; and 3) alignments of the medaka and zebrafish maps to the pufferfish (Tetraodon nigroviridis) genome. Our results show that map-genome alignments can be improved by combining alignments across presumptive intron breaks and ignoring alignments for simple sequence length polymorphism (SSLP) marker sequences. Comparisons between vertebrate maps and genomes reveal broad patterns of conservation among vertebrate genomes and the differential effects of genome rearrangement over time and across lineages.

4.
Nucleic Acids Res ; 34(17): 4685-701, 2006.
Article in English | MEDLINE | ID: mdl-16963777

ABSTRACT

Eukaryotic pathogens of humans often evade the immune system by switching the expression of surface proteins encoded by subtelomeric gene families. To determine if plant pathogenic fungi use a similar mechanism to avoid host defenses, we sequenced the 14 chromosome ends of the rice blast pathogen, Magnaporthe oryzae. One telomere is directly joined to ribosomal RNA-encoding genes, at the end of the approximately 2 Mb rDNA array. Two are attached to chromosome-unique sequences, and the remainder adjoin a distinct subtelomere region, consisting of a telomere-linked RecQ-helicase (TLH) gene flanked by several blocks of tandem repeats. Unlike other microbes, M.oryzae exhibits very little gene amplification in the subtelomere regions-out of 261 predicted genes found within 100 kb of the telomeres, only four were present at more than one chromosome end. Therefore, it seems unlikely that M.oryzae uses switching mechanisms to evade host defenses. Instead, the M.oryzae telomeres have undergone frequent terminal truncation, and there is evidence of extensive ectopic recombination among transposons in these regions. We propose that the M.oryzae chromosome termini play more subtle roles in host adaptation by promoting the loss of terminally-positioned genes that tend to trigger host defenses.


Subject(s)
Chromosomes, Fungal/chemistry , Magnaporthe/genetics , Telomere/chemistry , Adenosine Triphosphatases/genetics , Base Sequence , DNA Helicases/genetics , DNA Transposable Elements , Fungal Proteins/genetics , Gene Duplication , Genes, Fungal , Magnaporthe/metabolism , Molecular Sequence Data , Oryza/microbiology , RecQ Helicases , Sequence Analysis, DNA , Terminology as Topic
5.
BMC Genomics ; 6: 181, 2005 Dec 16.
Article in English | MEDLINE | ID: mdl-16359543

ABSTRACT

Salamanders of the genus Ambystoma are a unique model organism system because they enable natural history and biomedical research in the laboratory or field. We developed Sal-Site to integrate new and existing ambystomatid salamander research resources in support of this model system. Sal-Site hosts six important resources: 1) Salamander Genome Project: an information-based web-site describing progress in genome resource development, 2) Ambystoma EST Database: a database of manually edited and analyzed contigs assembled from ESTs that were collected from A. tigrinum tigrinum and A. mexicanum, 3) Ambystoma Gene Collection: a database containing full-length protein-coding sequences, 4) Ambystoma Map and Marker Collection: an image and database resource that shows the location of mapped markers on linkage groups, provides information about markers, and provides integrating links to Ambystoma EST Database and Ambystoma Gene Collection databases, 5) Ambystoma Genetic Stock Center: a website and collection of databases that describe an NSF funded salamander rearing facility that generates and distributes biological materials to researchers and educators throughout the world, and 6) Ambystoma Research Coordination Network: a web-site detailing current research projects and activities involving an international group of researchers. Sal-Site is accessible at http://www.ambystoma.org.


Subject(s)
Databases as Topic , Urodela/genetics , Animals , Chromosome Mapping , Computational Biology , Contig Mapping , Expressed Sequence Tags , Gene Library , Genome , Internet
6.
Bioinformatics ; 21(9): 2097-8, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15671115

ABSTRACT

SUMMARY: BLAST is a widely used alignment tool for detecting matches between a query sequence and entries in nucleotide sequence databases. Matches (high-scoring pairs, HSPs) are assigned a score based on alignment length and quality and, by default, are reported with the top-scoring matches listed first. For certain types of searches, however, this method of reporting is not optimal. This is particularly true when searching a genome sequence with a query that was derived from the same genome, or a closely related one. If the genome is complex and the assembly is far from complete, correct matches are often relegated to low positions in the results, where they may be easily overlooked. To rectify this problem, we developed TruMatch--a program that parses standard BLAST outputs and identifies HSPs that involve query segments with unique matches to the assembly. Candidates for bona fide matches between a query sequence and a genome assembly are listed at the top of the TruMatch output. AVAILABILITY: TruMatch is written in Perl and is freely available to non-commercial users via web download at the URL: http://genome.kbrin.uky.edu/fungi_tel/TruMatch/


Subject(s)
Algorithms , Chromosome Mapping/methods , Databases, Genetic , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Software
7.
Bioinformatics ; 21(8): 1695-8, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15585532

ABSTRACT

UNLABELLED: TERMINUS is a set of tools to map telomeres on draft sequences of whole genome shotgun sequencing projects. It mines raw sequence reads (from a trace archive) for telomeric reads, assembles them into contigs representing individual chromosome ends and BLASTs the resulting consensus sequences against the genome assembly to identify telomere-proximal genomic contigs. Finally, it estimates the sizes of telomeric gaps and identifies clones for gap closure. TERMINUS is implemented as a set of Perl scripts that requires two sets of inputs: the NCBI Trace Archive files for a given genome project; and ancillary genome assembly information. Results are output in spreadsheets containing information that facilitates manual validation. AVAILABILITY: The TERMINUS package and supplementary information can be downloaded from http://www.genome.kbrin.uky.edu/fungi_tel/terminus/ CONTACT: farman@uky.edu.


Subject(s)
Algorithms , Chromosome Mapping/methods , Database Management Systems , Information Storage and Retrieval/methods , Sequence Analysis, DNA/methods , Software , Telomere/genetics , Databases, Genetic , User-Computer Interface
8.
Nature ; 422(6934): 859-68, 2003 Apr 24.
Article in English | MEDLINE | ID: mdl-12712197

ABSTRACT

Neurospora crassa is a central organism in the history of twentieth-century genetics, biochemistry and molecular biology. Here, we report a high-quality draft sequence of the N. crassa genome. The approximately 40-megabase genome encodes about 10,000 protein-coding genes--more than twice as many as in the fission yeast Schizosaccharomyces pombe and only about 25% fewer than in the fruitfly Drosophila melanogaster. Analysis of the gene set yields insights into unexpected aspects of Neurospora biology including the identification of genes potentially associated with red light photobiology, genes implicated in secondary metabolism, and important differences in Ca2+ signalling as compared with plants and animals. Neurospora possesses the widest array of genome defence mechanisms known for any eukaryotic organism, including a process unique to fungi called repeat-induced point mutation (RIP). Genome analysis suggests that RIP has had a profound impact on genome evolution, greatly slowing the creation of new genes through genomic duplication and resulting in a genome with an unusually low proportion of closely related genes.


Subject(s)
Genes, Fungal/genetics , Genome, Fungal , Neurospora crassa/genetics , Calcium Signaling/genetics , DNA Methylation , Diterpenes/metabolism , Evolution, Molecular , Gene Duplication , Heterotrimeric GTP-Binding Proteins/metabolism , Multienzyme Complexes/genetics , Multigene Family/genetics , Mutagenesis/genetics , Neurospora crassa/cytology , Neurospora crassa/enzymology , Neurospora crassa/metabolism , Plant Diseases/microbiology , RNA Interference , RNA, Ribosomal/genetics , Receptors, Cell Surface/genetics , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...