Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 22(48): 485201, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22056508

ABSTRACT

NbSe(3) exhibits remarkable anisotropy in most of its physical properties and has been a model system for studies of quasi-one-dimensional charge density wave (CDW) phenomena. Herein, we report the synthesis, characterization, and electrical transport of single-crystalline NbSe(3) nanoribbons by a facile one-step vapour transport process involving the transport of selenium powder onto a niobium foil substrate. Our investigations aid the understanding of the CDW nature of NbSe(3) and the growth process of the material. They also indicate that NbSe(3) nanoribbons have enhanced CDW properties compared to those of the bulk phase due to size confinement effects, thus expanding the search for new mesoscopic phenomena at the nanoscale level. Single nanoribbon measurements of the electrical resistance as a function of temperature show charge density wave transitions at 59 and 141 K. We also demonstrate significant enhancement in the depinning effect and sliding regimes mainly attributed to finite size effects.

2.
ACS Nano ; 5(11): 8861-7, 2011 Nov 22.
Article in English | MEDLINE | ID: mdl-21988709

ABSTRACT

Considerable recent research interest has focused on mapping the structural phase diagrams of anisotropic VO(2) nanobeams as model systems for elucidating single-domain behavior within strongly correlated electronic materials, to examine in particular the coupling of lattice and orbital degrees of freedom. Nevertheless, the role of substitutional doping in altering the phase stabilities of competing ground states of VO(2) remains underexplored. In this study, we use individual nanowire Raman microprobe mapping to examine the structural phase progressions underlying the metal-insulator transitions of solution-grown W(x)V(1-x)O(2) nanowires. The structural phase progressions have been monitored for three distinctive modes of inducing the electronic metal-insulator phase transition: as a function of (a) W doping at constant temperature, (b) varying temperature for specific W dopant concentrations, and (c) varying applied voltage for specific W dopant concentrations. Our results suggest the establishment of a coexistence regime within individual nanowires wherein M1 and R phases simultaneously exist before the percolation threshold is reached and the nanowire becomes entirely metallic. Such a coexistence regime has been found to exist during both temperature- and voltage-induced transitions. No evidence of an M2 phase is observed upon inducing the electronic phase transition by any of the three distinctive methods (temperature, doping, and applied voltage), suggesting that substitutional tungsten doping stabilizes the M1 phase over its M2 counterpart and further corroborating that the latter phase is not required to mediate M1→R transformations.

SELECTION OF CITATIONS
SEARCH DETAIL
...