Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Mil Health ; 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34686561

ABSTRACT

Extreme environments present medical and occupational challenges that extend beyond generic resuscitation, to formulating bespoke diagnoses and prognoses and embarking on management pathways rarely encountered in civilian practice. Pathophysiological complexity and clinical uncertainty call for military physicians of all kinds to balance intuition with pragmatism, adapting according to the predominant patterns of care required. In an era of smaller operational footprints and less concentrated clinical experience, proposals aimed at improving the systematic care of Service Personnel incapacitated at environmental extremes must not be lost to corporate memory. These general issues are explored in the particular context of thermal stress and metabolic disruption. Specific focus is given to the accounts of military physicians who served on large-scale deployments into the heat of Iraq and Kuwait (Operation TELIC) and Oman (Exercise SAIF SAREEA). Generalisable insights into the enduring character of military medicine and future clinical requirements result.

2.
J R Army Med Corps ; 164(4): 290-292, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29176002

ABSTRACT

Military employment commonly exposes personnel to strenuous physical exertion. The resulting interaction between occupational stress and individual susceptibility to illness demands careful management. This could extend to prospective identification of high physiological strain in healthy personnel, in addition to recognition and protection of vulnerable individuals. The emergence and ubiquitous uptake of 'wearable' physiological and medical monitoring devices might help to address this challenge, but requires that the right questions are asked in sourcing, developing, validating and applying such technologies. Issues that must be addressed include system requirements, such as the likelihood of end users deploying and using technology as intended; interpretation of data in relation to pretest probability, including the potential for false-positive results; differentiation of pathological states from normal physiology; responsibility for and consequences of acting on abnormal or unexpected results and cost-effectiveness. Ultimately, the performance of a single monitoring system, in isolation or alongside other measures, should be judged by whether any improvement is offered versus existing capabilities and at what cost to mission effectiveness.


Subject(s)
Military Medicine/methods , Military Personnel , Monitoring, Physiologic , Humans , Medical Informatics , Occupational Stress/diagnosis , Stress, Psychological/diagnosis
3.
Eur J Appl Physiol ; 118(1): 75-84, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29075863

ABSTRACT

PURPOSE: To prevent heat-related illnesses, guidelines recommend limiting core body temperature (T c) ≤ 38 °C during thermal stress. Copeptin, a surrogate for arginine vasopressin secretion, could provide useful information about fluid balance, thermal strain and health risks. It was hypothesised that plasma copeptin would rise with dehydration from occupational heat stress, concurrent with sympathoadrenal activation and reduced glomerular filtration, and that these changes would reflect T c responses. METHODS: Volunteers (n = 15) were recruited from a British Army unit deployed to East Africa. During a simulated combat assault (3.5 h, final ambient temperature 27 °C), T c was recorded by radiotelemetry to differentiate volunteers with maximum T c > 38 °C versus ≤ 38 °C. Blood was sampled beforehand and afterwards, for measurement of copeptin, cortisol, free normetanephrine, osmolality and creatinine. RESULTS: There was a significant (P < 0.05) rise in copeptin from pre- to post-assault (10.0 ± 6.3 vs. 16.7 ± 9.6 pmol L-1, P < 0.001). Although osmolality did not increase, copeptin correlated strongly with osmolality after the exposure (r = 0.70, P = 0.004). In volunteers with maximum T c > 38 °C (n = 8) vs ≤ 38 °C (n = 7) there were significantly greater elevations in copeptin (10.4 vs. 2.4 pmol L-1) and creatinine (10 vs. 2 µmol L-1), but no differences in cortisol, free normetanephrine or osmolality. CONCLUSIONS: Changes in copeptin reflected T c response more closely than sympathoadrenal markers or osmolality. Dynamic relationships with tonicity and kidney function may help to explain this finding. As a surrogate for integrated physiological strain during work in a field environment, copeptin assay could inform future measures to prevent heat-related illnesses.


Subject(s)
Glycopeptides/blood , Heat Stress Disorders/blood , Adult , Creatinine/blood , Exercise , Heat Stress Disorders/physiopathology , Heat-Shock Response , Humans , Hydrocortisone/blood , Male , Military Personnel , Normetanephrine/blood , Osmolar Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...