Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(18): e2307448, 2024 May.
Article in English | MEDLINE | ID: mdl-38447160

ABSTRACT

The synthesis of a family of chiral and enantiomerically pure pyridyl-diamide (pda) ligands that upon complexation with europium [Eu(CF3SO3)3] result in chiral complexes with metal centered luminescence is reported; the sets of enantiomers giving rise to both circular dichroism (CD) and circularly polarized luminescence (CPL) signatures. The solid-state structures of these chiral metallosupramolecular systems are determined using X-ray diffraction showing that the ligand chirality is transferred from solution to the solid state. This optically favorable helical packing arrangement is confirmed by recording the CPL spectra from the crystalline assembly by using steady state and enantioselective differential chiral contrast (EDCC) CPL Laser Scanning Confocal Microscopy (CPL-LSCM) where the two enantiomers can be clearly distinguished.

2.
Nat Commun ; 14(1): 1537, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36941271

ABSTRACT

Circularly polarised luminescence (CPL) is gaining a rapidly increasing following and finding new applications in both life and material sciences. Spurred by recent instrumental advancements, the development of CPL active chiral emitters is going through a renaissance, especially the design and synthesis of CPL active luminescent lanthanide complexes owing to their unique and robust photophysical properties. They possess superior circularly polarised brightness (CPB) and can encode vital chiral molecular fingerprints in their long-lived emission spectrum. However, their application as embedded CPL emitters in intelligent security inks has not yet been fully exploited. This major bottleneck is purely hardware related: there is currently no suitable compact CPL instrumentation available, and handheld CPL photography remains an uncharted territory. Here we present a solution: an all solid-state small footprint CPL camera with no moving parts to facilitate ad hoc time-resolved enantioselective differential chiral contrast (EDCC) based one-shot CPL photography (CPLP).

3.
J Am Chem Soc ; 144(27): 12290-12298, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35763425

ABSTRACT

This work showcases chiral complementarity in aromatic stacking interactions as an effective tool to optimize the chiroptical and electrochemical properties of perylene diimides (PDIs). PDIs are a notable class of robust dye molecules and their rich photo- and electrochemistry and potential chirality make them ideal organic building blocks for chiral optoelectronic materials. By exploiting the new bay connectivity of twisted PDIs, a dynamic bis-PDI macrocycle (the "Pink Box") is realized in which homochiral PDI-PDI π-π stacking interactions are switched on exclusively. Using a range of experimental and computational techniques, we uncover three important implications of the macrocycle's chiral complementarity for PDI optoelectronics. First, the homochiral intramolecular π-π interactions anchor the twisted PDI units, yielding enantiomers with half-lives extended over 400-fold, from minutes to days (in solution) or years (in the solid state). Second, homochiral H-type aggregation affords the macrocycle red-shifted circularly polarized luminescence and one of the highest dissymmetry factors of any small organic molecule in solution (glum = 10-2 at 675 nm). Finally, excellent through-space PDI-PDI π-orbital overlap stabilizes PDI reduced states, akin to covalent functionalization with electron-withdrawing groups.


Subject(s)
Perylene , Electrochemistry , Electrons , Perylene/chemistry , Stereoisomerism
4.
Chem Commun (Camb) ; 58(44): 6385-6388, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35543210

ABSTRACT

BINOL moieties of different electronic demand are useful blocks for enabling the photo-production and modulation of triplet excited states in readily-accesible BINOL-based O-BODIPY dyes from standard F-BODIPY precursors. The rapid and rational development of smarter triplet-enabling BODIPY dyes on the basis of this strategy (e.g., TADF biomarker 4a or room temperature phosphor 4g) paves the way for advancing photonic applications based on organic triplet photosensitizers.

5.
Chem Commun (Camb) ; 58(39): 5889-5892, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35471230

ABSTRACT

A dual-photofunctional organogermanium compound based on a donor-acceptor-donor architecture that exhibits thermally activated delayed fluorescence and mechano-responsive luminochromism has been developed. The developed compound was successfully applied as an emitter for efficient organic light-emitting diodes.

6.
Nat Commun ; 13(1): 553, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087047

ABSTRACT

The molecular machinery of life is founded on chiral building blocks, but no experimental technique is currently available to distinguish or monitor chiral systems in live cell bio-imaging studies. Luminescent chiral molecules encode a unique optical fingerprint within emitted circularly polarized light (CPL) carrying information about the molecular environment, conformation, and binding state. Here, we present a CPL Laser Scanning Confocal Microscope (CPL-LSCM) capable of simultaneous chiroptical contrast based live-cell imaging of endogenous and engineered CPL-active cellular probes. Further, we demonstrate that CPL-active probes can be activated using two-photon excitation, with complete CPL spectrum recovery. The combination of these two milestone results empowers the multidisciplinary imaging community, allowing the study of chiral interactions on a sub-cellular level in a new (chiral) light.


Subject(s)
Luminescence , Microscopy, Confocal/methods , Animals , Luminescent Measurements/methods , Mice , Molecular Conformation , NIH 3T3 Cells , Optical Imaging/methods , Optical Phenomena , Polymers/chemistry , Stereoisomerism
7.
Mater Horiz ; 8(6): 1805-1815, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34846509

ABSTRACT

Seemingly not, but for unexpected reasons. Combining the triplet harvesting properties of TADF materials with the fast emission rates and colour purity of fluorescent emitters is attractive for developing high performance OLEDs. In this "hyperfluorescence" approach, triplet excitons are converted to singlets on the TADF material and transferred to the fluorescent material by long range Förster energy transfer. The primary loss mechanism is assumed to be Dexter energy transfer from the TADF triplet to the non-emissive triplet of the fluorescent emitter. Here we use optical spectroscopy to investigate energy transfer in representative emissive layers. Despite observing kinetics that at first appear consistent with Dexter quenching of the TADF triplet state, transient absorption, photoluminescence quantum yields, and comparison to phosphor-sensitised "hyperphosphorescent" systems reveal that this is not the case. While Dexter quenching by the fluorescent emitter is likely still a key loss mechanism in devices, we demonstrate that - despite initial appearances - it is inoperative under optical excitation. These results reveal a deep limitation of optical spectroscopy in characterizing hyperfluorescent systems.

8.
Chemistry ; 27(53): 13390-13398, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34314537

ABSTRACT

Novel electron donor-acceptor-donor (D-A-D) compounds comprising dibenzo[a,j]phenazine as the central acceptor core and two 7-membered diarylamines (iminodibenzyl and iminostilbene) as the donors have been designed and synthesized. Investigation of their physicochemical properties revealed the impact of C2 insertion into well-known carbazole electron donors on the properties of previously reported twisted dibenzo[a,j]phenazine-core D-A-D triads. Slight structural modification caused a drastic change in conformational preference, allowing unique photophysical behavior of dual emission derived from room-temperature phosphorescence and triplet-triplet annihilation. Furthermore, electrochemical analysis suggested sigma-dimer formation and electrochemical polymerization on the electrode. Quantum chemical calculations also rationalized the experimental results.

9.
Nat Chem ; 13(6): 521-522, 2021 06.
Article in English | MEDLINE | ID: mdl-34075219
10.
J Am Chem Soc ; 142(3): 1482-1491, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31895980

ABSTRACT

A new class of thermally activated delayed fluorescent donor-acceptor-donor-acceptor (D-A-D-A) π-conjugated macrocycle comprised of two U-shaped electron-acceptors (dibenzo[a,j]phenazine) and two electron-donors (N,N'-diphenyl-p-phenyelendiamine) has been rationally designed and successfully synthesized. The macrocyclic compound displayed polymorphs-dependent conformations and emission properties. Comparative studies on physicochemical properties of the macrocycle with a linear surrogate have revealed significant effects of the structural cyclization of the D-A-repeating unit, including more efficient thermally activated delayed fluorescence (TADF). Furthermore, an organic light-emitting diode (OLED) device fabricated with the macrocycle compound as the emitter has achieved a high external quantum efficiency (EQE) up to 11.6%, far exceeding the theoretical maximum (5%) of conventional fluorescent emitters and that with linear analogue (6.9%).

11.
ACS Appl Mater Interfaces ; 11(30): 27125-27133, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31314484

ABSTRACT

New thermally activated delayed fluorescence (TADF) blue emitter molecules based on the known donor-acceptor-donor (D-A-D)-type TADF molecule, 2,7-bis(9,9-dimethylacridin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DDMA-TXO2), are reported. The motivation for the present investigation is via the use of rational molecular design, based on DDMA-TXO2, to elevate the organic light emitting diode (OLED) performance and obtain deeper blue color coordinates. To achieve this goal, the strength of the donor (D) unit and acceptor (A) units have been tuned with methyl substituents. The methyl functionality on the acceptor was also expected to modulate the D-A torsion angle in order to obtain a blue shift in the electroluminescence. The effect of regioisomeric structures has also been investigated. Herein, we report the photophysical, electrochemical, and single-crystal X-ray crystallography data to assist with the successful OLED design. The methyl substituents on the DDMA-TXO2 framework have profound effects on the photophysics and color coordinates of the emitters. The weak electron-donating methyl groups alter the redox properties of the D and A units and consequently affect the singlet and triplet levels but not the energy gap (ΔEST). By systematically manipulating all of the aforementioned factors, devices have been obtained with acceptor-substituted III with a maximum external quantum efficiency of 22.6% and Commission Internationale de l'Éclairage coordinates of (0.15, 0.18) at 1000 cd m-2.

12.
J Org Chem ; 83(17): 10289-10302, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30102036

ABSTRACT

A series of bisbenzofuro[2,3- b:3',2'- e]pyridines (BBZFPys) bearing a chlorine functionality have been efficiently synthesized through a Pd-catalyzed double oxidative intramolecular C-H/C-H coupling of monochlorinated 2,6-diaryloxypyridines. The subsequent Buchwald-Hartwig amination of the chlorinated BBZFPys allowed for the access to a new class of donor-acceptor (D-A) π-conjugated compounds that comprise BBZFPy as an electron acceptor (A) and diarylamines as a donor (D) unit. The investigation of the steady-state photophysical properties of the prepared D-A compounds revealed that they are emissive in both solution and solid states in the blue-to-green color region. The singlet-triplet energy splitting (Δ EST) was found to be much smaller than that of substituent-free BBZFPy (0.70 eV), ranging from 0.01 to 0.56 eV. The time-resolved spectroscopy revealed that the D-A compounds, comprising a bis( tert-butyl)carbazole as the D and CF3-attached BBZFPy as the A, showed delayed fluorescence (DF) in nonpolar matrix host material (Zeonex), while in a polar matrix (DPEPO), room-temperature phosphorescence (RTP) was faintly observed. Furthermore, organic light-emitting diodes (OLEDs) fabricated with the D-A compounds as a blue emitter showed a moderate external quantum efficiencies (EQEs) up to 1.5%.

13.
J Phys Chem A ; 122(18): 4437-4447, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29664635

ABSTRACT

A pair of complementary molecular dyads have been synthesized around a 1,2-diaminocyclohexyl spacer that itself undergoes ring inversion. Despite these conformational exchange processes, the donor and acceptor occupy quite restricted spatial regions, and they are not interchangeable. The donor and acceptor pair comprise disparate boron dipyrromethene dyes selected to display favorable electronic energy transfer (EET). Steady-state emission spectroscopy confirms that through-space EET from donor to acceptor is almost quantitative, aided by the relatively short separations. Ultrafast time-resolved fluorescence spectroscopy has allowed determination of the rates of EET for both dyads. Surprisingly, in view of the close proximity of donor and acceptor (center-to-center separations less than 20 Å), the EET dynamics are well-accounted for in terms of the computed molecular conformations and conventional Förster theory. One dyad appears as a single family of conformations, but EET for the second dyad corresponds to dual-exponential kinetics. In this latter case, an intramolecular hydrogen bond helps stabilize an open geometry, wherein EET is relatively slow.

14.
Org Biomol Chem ; 15(36): 7643-7653, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28869264

ABSTRACT

Palladium catalysed coupling of the 2-iodoBODIPY 3 with a range of anilines and a primary alkylamine succeeds in generating the corresponding 2-aminoBODIPYs. These 2-aminoBODIPY derivatives are non-emissive and quantum chemical calculations and electrochemistry are consistent with charge transfer from the amine substituent. Attenuation of this charge transfer pathway by conversion of the 1,2-phenylenediamine derivative 9 into the corresponding benzimidazolone 10 restores the fluorescence and has been used as the basis for a fluorescence sensor for phosgene.

15.
J Phys Chem A ; 121(10): 2096-2107, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28245114

ABSTRACT

A small series of boron dipyrromethene (BODIPY) dyes has been synthesized whereby the boron atom is constrained in a five-membered ring formed from either o-dihydroxypyridine or o-aminophenol. In the latter case, the amino group has been converted into the corresponding amide derivative so as to curtail the possibility for light-induced charge transfer from strap to BODIPY. These compounds are weakly emissive in fluid solution but cleavage of the strap, by treatment with a photoacid generator, restores strong fluorescence. Surprisingly, the same compounds remain weakly fluorescent in a rigid glass at 80 K where light-induced charge transfer is most unlikely. In fluid solution, the fluorescence quantum yield increases with increasing temperature due to a thermally activated step but does not correlate with the thermodynamics for intramolecular charge transfer. It is proposed that the strap causes rupture of the potential energy surface for the excited state, creating traps that provide new routes by which the wave packet can return to the ground state. Access to the trap from the excited state is reversible, leading to the delayed emission. Analysis of the temperature dependent emission intensities allows estimation of the kinetic parameters associated with entering and leaving the trap.

16.
J Phys Chem A ; 120(41): 8104-8113, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27661763

ABSTRACT

A small series of closely spaced, bichromophoric boron dipyrromethene (BODIPY) derivatives has been examined by optical spectroscopy and compared to the corresponding mononuclear dyes. The compounds vary according to the site of attachment and also by the nature of alkyl or aryl substituents incorporated into the dipyrrin backbone. Excitonic coupling splits the lowest-energy absorption transition in each case, but to highly variable degrees. There are also marked changes in the fluorescence quantum yields across the series but much less variation in the excited-state lifetimes. After comparing different models, it is concluded that the ideal dipole approximation gives a crude qualitative representation of the observed splitting of the absorption transition, but the extended dipole approach is not applicable to these systems. Agreement is substantially improved by employing a model that takes into account the dihedral angle between the planes of the two dipyrrin units. The large variation in radiative rate constants, and those for the accompanying nonradiative processes, is accountable in terms of electronic coupling and/or intensity borrowing between the two excitonic states. In all cases, the dihedral angle between the two BODIPY units plays a key role.

17.
Chemistry ; 22(40): 14356-66, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27529596

ABSTRACT

The fluorescence lifetime and quantum yield are seen to depend in an unexpected manner on the nature of the solvent for a pair of tripartite molecules composed of two identical boron dipyrromethene (BODIPY) residues attached to a 1,10-phenanthroline core. A key feature of these molecular architectures concerns the presence of an amide linkage that connects the BODIPY dye to the heterocyclic platform. The secondary amide derivative is more sensitive to environmental change than is the corresponding tertiary amide. In general, increasing solvent polarity, as measured by the static dielectric constant, above a critical threshold tends to reduce fluorescence but certain hydrogen bond accepting solvents exhibit anomolous behaviour. Fluorescence quenching is believed to arise from light-induced charge transfer between the two BODIPY dyes, but thermodynamic arguments alone do not explain the experimental findings. Molecular modelling is used to argue that the conformation changes in strongly polar media in such a way as to facilitate improved rates of light-induced charge transfer. These solvent-induced changes, however, differ remarkably for the two types of amide.

18.
Phys Chem Chem Phys ; 17(39): 26175-82, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26381219

ABSTRACT

An extended molecular array, comprising three distinct types of chromophores and two additional redox-active subunits, that harvests photons over most of the visible spectral range has been synthesized and characterised. The array exhibits a rich variety of electrochemical waves when examined by cyclic voltammetry but assignment can be made on the basis of control compounds and molecular orbital calculations. Stepwise electronic energy transfer occurs along the molecular axis, corresponding to a gradient of excitation energies, to populate the lowest-energy excited state of the ultimate acceptor. The latter species, which absorbs and emits in the far-red region, enters into light-induced charge transfer with a terminal amine group. The array is relatively stable under illumination with white light but degrades slowly via a series of well-defined steps, the first of which is autocatalytic. One of the main attributes of this system is the capability to harvest an unusually high fraction of sunlight while providing protection against exposure to UV light.


Subject(s)
Boron Compounds/chemistry , Coloring Agents/chemistry , Pyrenes/chemistry , Biomimetics , Electrochemical Techniques , Energy Transfer , Light , Models, Molecular , Oxidation-Reduction , Photosynthesis , Spectrometry, Fluorescence
19.
Photochem Photobiol Sci ; 14(6): 1100-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25898915

ABSTRACT

A molecular dyad, comprising two disparate extended boron dipyrromethene (BODIPY) units, has been identified as a potential component of artificial light-harvesting arrays. Highly efficient, intramolecular electronic energy transfer takes place under illumination but there is some competition from light-induced electron transfer along the molecular axis. The primary energy acceptor has a somewhat shortened excited-state lifetime and reduced emission quantum yield due to charge transfer from a terminal amine residue, the latter being required for the molecular system to operate in organic solar cells. Under continuous illumination with simulated solar light, the dyad undergoes very slow decomposition. In a protic solvent, both BODIPY units degrade at the same rate via an autocatalytic process. The products, one of which is a protonated analogue of the donor, degrade further by independent routes. In aprotic solvents or thin plastic films, the acceptor BODIPY dye absorbing at lowest energy undergoes photochemical degradation as above but the donor is much more stable under these conditions. At each stage of degradation, the molecule retains the ability to sensitize an amorphous silicon solar cell and the overall turnover number with respect to absorbed photons exceeds 10 million. The optical properties of the target compound nicely complement those of the solar cell and sensitization helps to avoid Staebler-Wronski photo-degradation.


Subject(s)
Boron Compounds/chemistry , Light , Quantum Theory , Electrochemistry , Molecular Structure
20.
Photochem Photobiol Sci ; 13(10): 1397-401, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25093970

ABSTRACT

The ability of an unconstrained boron dipyrromethene dye to report on changes in local viscosity is improved by appending a single aryl ring at the lower rim of the dipyrrin core. Recovering the symmetry by attaching an identical aryl ring on the opposite side of the lower rim greatly diminishes the sensory activity, as does blocking rotation of the meso-aryl group. On the basis of viscosity- and temperature-dependence studies, together with quantum chemical calculations, it is proposed that a single aryl ring at the 3-position extends the molecular surface area that undergoes structural distortion during internal rotation. The substitution pattern at the lower rim also affects the harmonic frequencies at the bottom of the potential well and at the top of the barrier. These effects can be correlated with the separation of the H1,H7 hydrogen atoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...