Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 78(8): 2065-2080, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29358171

ABSTRACT

Primary prostate cancer is generally treatable by androgen deprivation therapy, however, later recurrences of castrate-resistant prostate cancer (CRPC) that are more difficult to treat nearly always occur due to aberrant reactivation of the androgen receptor (AR). In this study, we report that CRPC cells are particularly sensitive to the growth-inhibitory effects of reengineered tricyclic sulfonamides, a class of molecules that activate the protein phosphatase PP2A, which inhibits multiple oncogenic signaling pathways. Treatment of CRPC cells with small-molecule activators of PP2A (SMAP) in vitro decreased cellular viability and clonogenicity and induced apoptosis. SMAP treatment also induced an array of significant changes in the phosphoproteome, including most notably dephosphorylation of full-length and truncated isoforms of the AR and downregulation of its regulatory kinases in a dose-dependent and time-dependent manner. In murine xenograft models of human CRPC, the potent compound SMAP-2 exhibited efficacy comparable with enzalutamide in inhibiting tumor formation. Overall, our results provide a preclinical proof of concept for the efficacy of SMAP in AR degradation and CRPC treatment.Significance: A novel class of small-molecule activators of the tumor suppressor PP2A, a serine/threonine phosphatase that inhibits many oncogenic signaling pathways, is shown to deregulate the phosphoproteome and to destabilize the androgen receptor in advanced prostate cancer. Cancer Res; 78(8); 2065-80. ©2018 AACR.


Subject(s)
Enzyme Activators/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/enzymology , Protein Phosphatase 2C/drug effects , Small Molecule Libraries/therapeutic use , Animals , Cell Line, Tumor , Enzyme Activators/pharmacology , Heterografts , Humans , Male , Mice , Mice, SCID , Phosphoproteins/metabolism , Protein Phosphatase 2C/metabolism , Proteomics , RNA, Messenger/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Small Molecule Libraries/pharmacology
2.
J Clin Invest ; 127(6): 2081-2090, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28504649

ABSTRACT

Targeted cancer therapies, which act on specific cancer-associated molecular targets, are predominantly inhibitors of oncogenic kinases. While these drugs have achieved some clinical success, the inactivation of kinase signaling via stimulation of endogenous phosphatases has received minimal attention as an alternative targeted approach. Here, we have demonstrated that activation of the tumor suppressor protein phosphatase 2A (PP2A), a negative regulator of multiple oncogenic signaling proteins, is a promising therapeutic approach for the treatment of cancers. Our group previously developed a series of orally bioavailable small molecule activators of PP2A, termed SMAPs. We now report that SMAP treatment inhibited the growth of KRAS-mutant lung cancers in mouse xenografts and transgenic models. Mechanistically, we found that SMAPs act by binding to the PP2A Aα scaffold subunit to drive conformational changes in PP2A. These results show that PP2A can be activated in cancer cells to inhibit proliferation. Our strategy of reactivating endogenous PP2A may be applicable to the treatment of other diseases and represents an advancement toward the development of small molecule activators of tumor suppressor proteins.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Activators/pharmacology , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm , Enzyme Activation , Enzyme Activators/chemistry , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Mice, Transgenic , Protein Binding , Protein Phosphatase 2/chemistry , Signal Transduction , Tumor Burden , Xenograft Model Antitumor Assays
3.
Proc Natl Acad Sci U S A ; 113(15): E2152-61, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27036007

ABSTRACT

Notch controls skeletogenesis, but its role in the remodeling of adult bone remains conflicting. In mature mice, the skeleton can become osteopenic or osteosclerotic depending on the time point at which Notch is activated or inactivated. Using adult EGFP reporter mice, we find that Notch expression is localized to osteocytes embedded within bone matrix. Conditional activation of Notch signaling in osteocytes triggers profound bone formation, mainly due to increased mineralization, which rescues both age-associated and ovariectomy-induced bone loss and promotes bone healing following osteotomy. In parallel, mice rendered haploinsufficient in γ-secretase presenilin-1 (Psen1), which inhibits downstream Notch activation, display almost-absent terminal osteoblast differentiation. Consistent with this finding, pharmacologic or genetic disruption of Notch or its ligand Jagged1 inhibits mineralization. We suggest that stimulation of Notch signaling in osteocytes initiates a profound, therapeutically relevant, anabolic response.


Subject(s)
Bone and Bones/metabolism , Receptors, Notch/metabolism , Animals , Bone Marrow Cells/cytology , Bone and Bones/diagnostic imaging , Calcification, Physiologic/physiology , Cells, Cultured , Female , Green Fluorescent Proteins/genetics , Jagged-1 Protein/genetics , Male , Mice, Transgenic , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis/physiology , Presenilin-1/genetics , Stromal Cells/cytology , Stromal Cells/metabolism , X-Ray Microtomography
4.
Proc Natl Acad Sci U S A ; 113(1): 164-9, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26699482

ABSTRACT

Prior studies show that oxytocin (Oxt) and vasopressin (Avp) have opposing actions on the skeleton exerted through high-affinity G protein-coupled receptors. We explored whether Avp and Oxtr can share their receptors in the regulation of bone formation by osteoblasts. We show that the Avp receptor 1α (Avpr1α) and the Oxt receptor (Oxtr) have opposing effects on bone mass: Oxtr(-/-) mice have osteopenia, and Avpr1α(-/-) mice display a high bone mass phenotype. More notably, this high bone mass phenotype is reversed by the deletion of Oxtr in Oxtr(-/-):Avpr1α(-/-) double-mutant mice. However, although Oxtr is not indispensable for Avp action in inhibiting osteoblastogenesis and gene expression, Avp-stimulated gene expression is inhibited when the Oxtr is deleted in Avpr1α(-/-) cells. In contrast, Oxt does not interact with Avprs in vivo in a model of lactation-induced bone loss in which Oxt levels are high. Immunofluorescence microscopy of isolated nucleoplasts and Western blotting and MALDI-TOF of nuclear extracts show that Avp triggers Avpr1α localization to the nucleus. Finally, a specific Avpr2 inhibitor, tolvaptan, does not affect bone formation or bone mass, suggesting that Avpr2, which primarily functions in the kidney, does not have a significant role in bone remodeling.


Subject(s)
Arginine Vasopressin/physiology , Bone Density/physiology , Bone Remodeling/physiology , Osteogenesis/physiology , Oxytocin/physiology , Receptors, Vasopressin/metabolism , Amino Acid Sequence , Animals , Arginine Vasopressin/pharmacology , Blotting, Western , Bone Density/drug effects , Bone Density/genetics , Bone Diseases, Metabolic/genetics , Bone Remodeling/drug effects , Bone Remodeling/genetics , Gene Deletion , Mice , Mice, Mutant Strains , Molecular Sequence Data , Osteoblasts/metabolism , Osteoblasts/physiology , Osteogenesis/genetics , Oxytocin/pharmacology , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Receptors, Vasopressin/genetics
5.
Proc Natl Acad Sci U S A ; 111(50): 17995-8000, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25453078

ABSTRACT

A variety of human cancers, including nonsmall cell lung (NSCLC), breast, and colon cancers, are driven by the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases. Having shown that bisphosphonates, a class of drugs used widely for the therapy of osteoporosis and metastatic bone disease, reduce cancer cell viability by targeting HER1, we explored their potential utility in the prevention and therapy of HER-driven cancers. We show that bisphosphonates inhibit colony formation by HER1(ΔE746-A750)-driven HCC827 NSCLCs and HER1(wt)-expressing MB231 triple negative breast cancers, but not by HER(low)-SW620 colon cancers. In parallel, oral gavage with bisphosphonates of mice xenografted with HCC827 or MB231 cells led to a significant reduction in tumor volume in both treatment and prevention protocols. This result was not seen with mice harboring HER(low) SW620 xenografts. We next explored whether bisphosphonates can serve as adjunctive therapies to tyrosine kinase inhibitors (TKIs), namely gefitinib and erlotinib, and whether the drugs can target TKI-resistant NSCLCs. In silico docking, together with molecular dynamics and anisotropic network modeling, showed that bisphosphonates bind to TKIs within the HER1 kinase domain. As predicted from this combinatorial binding, bisphosphonates enhanced the effects of TKIs in reducing cell viability and driving tumor regression in mice. Impressively, the drugs also overcame erlotinib resistance acquired through the gatekeeper mutation T790M, thus offering an option for TKI-resistant NSCLCs. We suggest that bisphosphonates can potentially be repurposed for the prevention and adjunctive therapy of HER1-driven cancers.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/prevention & control , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/prevention & control , Diphosphonates/pharmacology , ErbB Receptors/antagonists & inhibitors , Animals , Blotting, Western , Diphosphonates/therapeutic use , Drug Repositioning/methods , Female , Flow Cytometry , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Mice , Mice, Inbred BALB C , Molecular Dynamics Simulation , Protein Binding , Signal Transduction/drug effects , Tetrazolium Salts , Thiazoles , Tumor Stem Cell Assay
6.
Proc Natl Acad Sci U S A ; 111(50): 17989-94, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25453081

ABSTRACT

Bisphosphonates are the most commonly prescribed medicines for osteoporosis and skeletal metastases. The drugs have also been shown to reduce cancer progression, but only in certain patient subgroups, suggesting that there is a molecular entity that mediates bisphosphonate action on tumor cells. Using connectivity mapping, we identified human epidermal growth factor receptors (human EGFR or HER) as a potential new molecular entity for bisphosphonate action. Protein thermal shift and cell-free kinase assays, together with computational modeling, demonstrated that N-containing bisphosphonates directly bind to the kinase domain of HER1/2 to cause a global reduction in downstream signaling. By doing so, the drugs kill lung, breast, and colon cancer cells that are driven by activating mutations or overexpression of HER1. Knocking down HER isoforms thus abrogates cell killing by bisphosphonates, establishing complete HER dependence and ruling out a significant role for other receptor tyrosine kinases or the enzyme farnesyl pyrophosphate synthase. Consistent with this finding, colon cancer cells expressing low levels of HER do not respond to bisphosphonates. The results suggest that bisphosphonates can potentially be repurposed for the prevention and therapy of HER family-driven cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Diphosphonates/pharmacology , ErbB Receptors/antagonists & inhibitors , Models, Molecular , Anisotropy , Blotting, Western , Cell Line, Tumor , Crystallography , Diphosphonates/metabolism , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Fluorescence , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Tetrazolium Salts , Thiazoles
7.
Proc Natl Acad Sci U S A ; 111(13): 4934-9, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24639522

ABSTRACT

The inherited deficiency of the lysosomal glucocerebrosidase (GBA) due to mutations in the GBA gene results in Gaucher disease (GD). A vast majority of patients present with nonneuronopathic, type 1 GD (GD1). GBA deficiency causes the accumulation of two key sphingolipids, glucosylceramide (GL-1) and glucosylsphingosine (LysoGL-1), classically noted within the lysosomes of mononuclear phagocytes. How metabolites of GL-1 or LysoGL-1 produced by extralysosomal glucocerebrosidase GBA2 contribute to the GD1 pathophysiology is not known. We recently recapitulated hepatosplenomegaly, cytopenia, hypercytokinemia, and the bone-formation defect of human GD1 through conditional deletion of Gba in Mx1-Cre(+):GD1 mice. Here we show that the deletion of Gba2 significantly rescues the GD1 clinical phenotype, despite enhanced elevations in GL-1 and LysoGL-1. Most notably, the reduced bone volume and bone formation rate are normalized. These results suggest that metabolism of GL-1 or LysoGL-1 into downstream bioactive lipids is a major contributor to the bone-formation defect. Direct testing revealed a strong inhibition of osteoblast viability by nanomolar concentrations of sphingosine, but not of ceramide. These findings are consistent with toxicity of high circulating sphingosine levels in GD1 patients, which decline upon enzyme-replacement therapy; serum ceramide levels remain unchanged. Together, complementary results from mice and humans affected with GD1 not only pinpoint sphingosine as being an osteoblast toxin, but also set forth Gba2 as a viable therapeutic target for the development of inhibitors to ameliorate certain disabling consequences of GD1.


Subject(s)
Gaucher Disease/genetics , Gaucher Disease/therapy , Gene Deletion , beta-Glucosidase/genetics , Animals , Cell Line , Gaucher Disease/enzymology , Humans , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Osteoblasts/metabolism , Osteoblasts/pathology , Phenotype , Sphingolipids/metabolism , Sphingosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...