Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891947

ABSTRACT

Esterquats constitute a unique group of quaternary ammonium salts (QASs) that contain an ester bond in the structure of the cation. Despite the numerous advantages of this class of compounds, only two mini-reviews discuss the subject of esterquats: the first one (2007) briefly summarizes their types, synthesis, and structural elements required for a beneficial environmental profile and only briefly covers their applications whereas the second one only reviews the stability of selected betaine-type esterquats in aqueous solutions. The rationale for writing this review is to critically reevaluate the relevant literature and provide others with a "state-of-the-art" snapshot of choline-type esterquats and betaine-type esterquats. Hence, the first part of this survey thoroughly summarizes the most important scientific reports demonstrating effective synthesis routes leading to the formation of both types of esterquats. In the second section, the susceptibility of esterquats to hydrolysis is explained, and the influence of various factors, such as the pH, the degree of salinity, or the temperature of the solution, was subjected to thorough analysis that includes quantitative components. The next two sections refer to various aspects associated with the ecotoxicity of esterquats. Consequently, their biodegradation and toxic effects on microorganisms are extensively analyzed as crucial factors that can affect their commercialization. Then, the reported applications of esterquats are briefly discussed, including the functionalization of macromolecules, such as cotton fabric as well as their successful utilization on a commercial scale. The last section demonstrates the most essential conclusions and reported drawbacks that allow us to elucidate future recommendations regarding the development of these promising chemicals.


Subject(s)
Betaine , Cations , Choline , Betaine/chemistry , Betaine/analogs & derivatives , Choline/chemistry , Choline/analogs & derivatives , Cations/chemistry , Esters/chemistry , Quaternary Ammonium Compounds/chemistry , Humans
2.
Environ Technol ; : 1-14, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849972

ABSTRACT

In the framework of this study, six fungal isolates which demonstrated a high capability for biodegrading iodosulphuron-methyl sodium as well as herbicidal ionic liquids based on this herbicide were isolated from different soil samples. The isolates were identified based on the ITS region, whereas biodegradation residues were determined based on LC-MS/MS. Depending on the isolate, the half-lives values of the biodegraded herbicide or herbicidal ionic liquid ranged significantly from just 1.25 days to more than 40 days. The research findings unveiled that the structure of cations is a central limiting factor affecting fungal growth and herbicide transformation in case of ionic liquids. The length of the alkyl chain has been identified as the primary driver of herbicide toxicity, emphasizing the importance of structural factors in herbicide design. In cases when dodecyl(2-hydroxyethyl)dimethyl cation was used, its biodegradation ranged from 0 to approx. 20% and the biodegradability of the iodosulfuron-methyl was notably limited for the majority of the studied isolates. This knowledge provides guidance for development and selection of herbicides with reduced environmental impact. This study highlights the ecological importance of soil fungi, their potential role in herbicide biodegradation, the influence of cations on fungal growth and herbicide transformation, and the structural factors governing herbicide toxicity. Further research in these areas may lead to more efficient and environmentally friendly approaches to herbicide management.

3.
Sci Total Environ ; 922: 171062, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38401717

ABSTRACT

The following research provides novel and relevant insights into potential environmental consequences of combination of various organic cations with commercial systemic herbicide (dicamba), in accordance with a 'herbicidal ionic liquids' (HILs) strategy. Toxicity assays of five dicamba-based HILs comprising different hydrophobic and hydrophilic cations, namely choline [CHOL][DIC], ethyl betainate [BETC2][DIC], decyl betainate [BETC10][DIC], hexadecyl betainate [BETC16][DIC] and didecyldimethylammonium [DDA][DIC]), have been tested towards bacteria (Pseudomonas putida, Escherichia coli, Bacillus subtilis), algae (Chlorella vulgaris), fresh and marine water crustaceans (Daphnia magna, Artemia franciscana). The structure of respective substituents in the cation emerged as a decisive determinant of toxicity in the case of tested species. In consequence, small ions of natural origin ([CHOL] and [BETC2]) demonstrated toxicity numerous orders of magnitude lower compared to fully synthetic [DDA]. These results emphasize the role of cations' hydrophobicity, as well as origin, in the observed acute toxic effect. Time-dependent toxicity assays also indicated that betaine-type cations comprising an ester bond can rapidly transform into less harmful substances, which can generally result in a reduction in toxicity by even several orders of magnitude. Nonetheless, these findings challenge the concept of ionic liquids with herbicidal activity and give apparent parallels to adjuvant-dependent toxicity issues recently noted in typical herbicidal formulations.


Subject(s)
Chlorella vulgaris , Herbicides , Ionic Liquids , Pseudomonas putida , Herbicides/toxicity , Herbicides/chemistry , Dicamba/chemistry , Ionic Liquids/toxicity , Ionic Liquids/chemistry , Cations/chemistry
4.
Chem Mater ; 35(19): 7878-7903, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37840775

ABSTRACT

Since the discovery of deep eutectic solvents (DESs) in 2003, significant progress has been made in the field, specifically advancing aspects of their preparation and physicochemical characterization. Their low-cost and unique tailored properties are reasons for their growing importance as a sustainable medium for the resource-efficient processing and synthesis of advanced materials. In this paper, the significance of these designer solvents and their beneficial features, in particular with respect to biomimetic materials chemistry, is discussed. Finally, this article explores the unrealized potential and advantageous aspects of DESs, focusing on the development of biomineralization-inspired hybrid materials. It is anticipated that this article can stimulate new concepts and advances providing a reference for breaking down the multidisciplinary borders in the field of bioinspired materials chemistry, especially at the nexus of computation and experiment, and to develop a rigorous materials-by-design paradigm.

5.
Pest Manag Sci ; 79(10): 3602-3610, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37183344

ABSTRACT

BACKGROUND: Growing concern for the protection of the environment and existing ecosystems has resulted in increasing consideration of phytotoxicity tests as valid ecotoxicological indicators of the potential hazards of the use of ionic liquids (ILs) or any other chemical. The objective of this study was to gain a detailed understanding of the influence of the solvent composition of spray solutions on the phytotoxic effect of foliar application of ionic pairs with weak (choline 2,4-dichlorophenoxyacetate, [Chol][2,4-D]), medium (N-hexylcholine 2,4-dichlorophenoxyacetate, [C6 Chol][2,4-D]) and good (N-dodecylcholine 2,4-dichlorophenoxyacetate, [C12 Chol][2,4-D]) surface-active properties. RESULTS: Experimental results unambiguously demonstrated that the biological activity of the test salt solutions, particularly [Chol][2,4-D] and [C6 Chol][2,4-D], can be strongly affected by the addition of an organic solvent, such as methanol, ethanol, dimethylformamide (DMF) or dimethylsulfoxide (DMSO) compared to solutions in pure water. However, the observed tendency is less pronounced for the compound exhibiting good surface activity, [C12 Chol][2,4-D]. CONCLUSIONS: The collected findings show that caution is warranted in the exploitation or modification of methodologies for assessing phytotoxicity to ensure the reliable interpretation of obtained results for environmental risk assessment or building quantitative structure-activity relationship (QSAR) models. © 2023 Society of Chemical Industry.


Subject(s)
Alkaloids , Ionic Liquids , Solvents , Ionic Liquids/chemistry , Ionic Liquids/toxicity , Choline , Ecosystem , Cations/chemistry , 2,4-Dichlorophenoxyacetic Acid/toxicity
6.
Plants (Basel) ; 12(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36840262

ABSTRACT

Lately, ionic forms (namely, quaternary ammonium salts, QASs) of nicotinamide, widely known as vitamin B3, are gaining popularity in the sectors developing novel pharmaceuticals and agrochemicals. However, the direct influence of these unique QASs on the development of various terrestrial plants, as well as other organisms, remains unknown. Therefore, three compounds comprising short, medium, and long alkyl chains in N-alkylnicotinamide were selected for phytotoxicity analyses, which were conducted on representative dicotyledonous (white mustard) and monocotyledonous (sorghum) plants. The study allowed the determination of the impact of compounds on the germination capacity as well as on the development of roots and stems of the tested plants. Interestingly, independently of the length of the alkyl chain or plant species, all QASs were established as non-phytotoxic. In addition, QSAR simulations, performed using the EPI Suite™ program pack, allowed the determination of the products' potential toxicity toward fish, green algae, and daphnids along with the susceptibility to biodegradation. The obtained nicotinamide derivative with the shortest chain (butyl) can be considered practically non-toxic according to GHS criteria, whereas salts with medium (decyl) and longest (hexadecyl) substituent were included in the 'acute II' toxicity class. These findings were supported by the results of the toxicity tests performed on the model aquatic plant Lemna minor. It should be stressed that all synthesized salts exhibit not only a lack of potential for bioaccumulation but also lower toxicity than their fully synthetic analogs.

7.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674875

ABSTRACT

The use of chemicals for various purposes in agriculture has numerous consequences, such as the contamination of ecosystems. Thus, nowadays it is perceived that their development should adhere to the principles of green chemistry elaborated by Paul Anastas. Consequently, to create more environment-friendly herbicides, we elaborated a 'green' synthesis method of a series of ionic liquids (ILs) containing cations derived from glycine. The appropriately modified cations were combined with an anion from the group of phenoxy acids, commonly known as 2,4-DP. The products were obtained with high yields, and subsequently, their properties, such as density, viscosity and solubility, were thoroughly examined to elucidate existing structure-property relationships. All ILs were liquids at room temperature, which enabled the elimination of some serious issues associated with solid active forms, such as the polymorphism or precipitation of an active ingredient from spray solution. Additionally, the synthesized compounds were tested under greenhouse conditions, which allowed an assessment of their effectiveness in regulating the growth of oilseed rape, selected as a model dicotyledonous plant. The product comprising a dodecyl chain exhibited the greatest reduction in the fresh weight of plants, significantly surpassing not only a commercially used reference herbicide but also the potassium salt of 2,4-DP.


Subject(s)
Herbicides , Ionic Liquids , Herbicides/chemistry , Amino Acids/chemistry , Glycine , Ecosystem , Cations/chemistry , Ionic Liquids/chemistry
8.
Sci Total Environ ; 845: 157181, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35817095

ABSTRACT

In this study, two homologous series of esterquats comprising alkyl (from ethyl to octadecyl) betainate cations and bromide as well as dicamba anions were successfully synthesized, starting from a renewable raw material - glycine betaine. Due to the favorable octanol-water partition coefficient and utilization of biodegradable cations of natural origin, synthesized esterquats can be considered promising alternatives to currently applied dicamba-based formulations. In addition, the obtained results allowed us to verify whether the organic cations in quaternary ammonium salts containing herbicidally active anions (such as dicamba) play the role of biologically inactive adjuvants that only enhance the efficiency of the active ingredient or if they simultaneously exhibit a significant degree of phytotoxicity. Analysis of the influence of alkyl betainate esterquats containing nonherbicidal (bromide) anions on seedlings of white mustard revealed that alkyl betainate cations promote the germination of white mustard seeds; however, the subsequent growth of the seedlings was significantly inhibited. Further studies performed on white mustard and cornflower plants in a stage of 4-6 leaves allowed us to conclude that in the case of sensitive plants, the high phytotoxicity can be attributed to the presence of the dicamba anion, whereas for more resistant plants the additional influence of the cation on the phytotoxic effect is visible. Esterquats comprising a dodecyl substituent or longer had high surface active properties. Nonetheless, their contact angle values were not correlated with phytotoxicity data, indicating an additional influence of the cation on this stage of plant development. Interestingly, subsequent dose-response experiments conducted for two selected dicamba-based products confirmed that the greatest phytotoxicity was expressed by compounds containing a decyl substituent.


Subject(s)
Dicamba , Herbicides , Anions , Betaine/toxicity , Bromides , Cations , Herbicides/toxicity , Sinapis
9.
J Agric Food Chem ; 70(27): 8222-8232, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35767421

ABSTRACT

This study demonstrates the utilization of naturally occurring nicotinamide (vitamin B3) in the sustainable synthesis of organic salts with application potential as environmentally friendly agrochemicals. The designed ionic pairs, obtained with high yields, consisted of N-alkylnicotinamide cation and commercially available herbicidal anions: 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA). The study confirmed the strong influence of the length of alkyl chain in products on the physicochemical properties as well as the development of cornflower and oil-seed rape. The majority of tested salts showed significantly better herbicidal activity (by approx. 30-50%) compared to the reference herbicide. Furthermore, N-hexadecylnicotinamide 4-chloro-2-methylphenoxyacetate was significantly more effective than the commercial formulation in the dose-response test. Their negligible vaporization, multiple times lower than that of commonly used dimethylammonium salts, eliminates one of the greatest threats of currently applied plant protection agents. Additionally, the risk of product migration or bioaccumulation in the environment was assessed as extremely low.


Subject(s)
Herbicides , Ionic Liquids , Magnoliopsida , Anions , Herbicides/chemistry , Ionic Liquids/chemistry , Salts , Vitamins
10.
Molecules ; 26(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34361550

ABSTRACT

Efficient use of herbicides for plant protection requires the application of auxiliary substances such as surfactants, stabilizers, wetting or anti-foaming agents, and absorption enhancers, which can be more problematic for environment than the herbicides themselves. We hypothesized that the combination of sulfonylurea (iodosulfuron-methyl) anion with inexpensive, commercially available quaternary tetraalkylammonium cations could lead to biologically active ionic liquids (ILs) that could become a convenient and environment-friendly alternative to adjuvants. A simple one-step synthesis allowed for synthesizing iodosulfuron-methyl based ILs with high yields ranging from 88 to 96% as confirmed by UV, FTIR, and NMR. The obtained ILs were found to possess several favorable properties compared to the currently used sodium salt iodosulfuron-methyl, such as adjustable hydrophobicity (octanol-water partition coefficient) and enhanced stability in aqueous solutions, which was supported by molecular calculations showing cation-anion interaction energies. In addition, soil mobility and volatility of ILs were more beneficial compared to the parental herbicide. Herbicidal activity tests toward oil-seed rape and cornflower revealed that ILs comprising at least one alkyl chain in the decyl to octadecyl range had similar or better efficacy compared to the commercial preparation without addition of any adjuvant. Furthermore, results of antimicrobial activity indicated that they were practically harmless or slightly toxic toward model soil microorganisms such as Pseudomonas putida and Bacillus cereus.


Subject(s)
Anti-Infective Agents/chemistry , Herbicides/chemistry , Ionic Liquids/chemistry , Sulfonamides/chemistry , Sulfonylurea Compounds/chemistry , Surface-Active Agents/chemistry , Anti-Infective Agents/pharmacology , Bacillus cereus/growth & development , Herbicides/pharmacology , Pseudomonas putida/growth & development , Sulfonylurea Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...